経済産業省委託

平成25年度工業標準化推進事業
戦略的国際標準化加速事業：ITSの規格化事業

ITS協調システムの情報項目の標準化に関する
分析・検証

報告書

平成26年3月

一般財団法人 日本自動車研究所
目次

第1章 はじめに .. 1
 1.1 C-ITS 国際標準化検討のための分析・検証の背景と目的 1
 1.2 C-ITS 国際標準化検討のための分析・検証の概要 4
 1.2.1 C-ITS とその標準化に関する日米欧状況まとめ 4
 1.2.2 C-ITS プラットフォームの検証 ... 4

第2章 C-ITS とその標準化に関する日米欧状況まとめ .. 5
 2.1 欧米および日本における C-ITS の経緯と最新の状況 5
 2.1.1 欧州における C-ITS の経緯と最新の状況 .. 5
 2.1.2 米国における C-ITS の経緯と最新の状況 ... 30
 2.1.3 日本における C-ITS の経緯と最新の状況 ... 37
 2.2 C-ITS の標準化に関する状況まとめ .. 40
 2.2.1 欧州の M/453 最終報告概要と C-ITS 標準化の現状 40
 2.2.2 米国および欧州の協調システム周波数帯共用問題の現状 51

第3章 協調システムのプラットフォームの分析と検証 .. 54
 3.1 検証に用いた主な欧州 C-ITS 標準の分析 ... 54
 3.1.1 アプリ要求仕様規格の分析 .. 54
 3.1.2 主要メッセージ CAM,DENM の EN 版規格の分析 63
 3.1.3 共通データ辞書規格の分析 .. 77
 3.2 C-ITS のアプリ整理案, メッセージ案, データ辞書案の検証 81
 3.2.1 アプリ整理案の検証 ... 81
 3.2.2 メッセージ構成案の EN 版 CAM, DENM との比較検証 91
 3.2.3 データ辞書案の検証と改訂 .. 93

第4章 まとめ .. 114
 4.1 分析・検証の成果 ... 114
 4.2 今後の課題 .. 119
付録 1 協調システムのデータ辞書（案） Ver.3 1
記載内容 .. 3
定義情報項目一覧 ... 5
情報項目定義 ... 8
時刻・時間情報 ... 8
位置・距離情報 ... 43
方位情報 ... 103
ITS-ST 属性情報（車両属性情報） .. 121
車両走行状態情報 .. 150
事象内容情報 ... 209
情報コンテンツ .. 290
データ制御・管理情報 ... 303
アプリ管理情報 ... 362
故障・ダイアグ情報 .. 365
付録 2 協調システム並びに周辺のセキュリティ 1

第 1 章 自動車をめぐるセキュリティ ... 3

第 2 章 協調システムにおける V2X 通信セキュリティの動向 10

2.1 欧州の動向 .. 10

2.1.1 セキュリティ標準化動向 ... 10

2.1.2 運用検討の状況 ... 11

2.2 米国の動向 ... 14

2.2.1 検討されているシステム ... 14

2.2.2 研究開発・実用化状況 .. 16

第 3 章 欧米協調 .. 17

3.1 HTG-1 .. 17

3.2 HTG-6 .. 19

第 4 章 自動車セキュリティの検討状況 .. 20

4.1 欧州プロジェクトの動向 .. 20

4.1.1 SeVeCom（Secure Vehicular Communication） 21

4.1.2 EVITA（E-safety Vehicle Intrusion protected Application） ... 22

4.1.3 SHE（Secure Hardware Extention） 25

4.1.4 Preserve（Preparing Secure Vehicle-to-X Communication Systems） 25

4.1.5 Oversee（Open Vehicular Secure Platform） 26

4.1.6 EURO-MILS（Multiple Applications Platform for Certified Separation） 27

4.1.7 Autozar（AUTomotive Open System ARchitecture） 30

4.1.8 まとめ ... 32

4.2 米国の状況 .. 32

4.3 その他の動き ... 33

第 5 章 まとめ .. 34
第1章 はじめに

1.1 C-ITS国際標準化検討のための分析・検証の背景と目的

最先端の情報通信技術を用い、人と道路と車両をネットワーク化し交通システムの安全性、効率性、環境性、快適性等の問題解決に大きく貢献する協調ITS（以下C-ITS*1）の一環として、日本では、路車間協調システムである交通情報を提供するVICSと5.8GHzDSRC*2を用いて高速道路自動料金収受を行うETCがともに10年以上を経て一般的になっている。VICSにおける車載器出荷台数は2013年第二四半期に累計約4000万台、ETCにおける車載器新規セットアップは2014年1月に累計約4500万台となって、高速道路利用者の約9割が利用している現状であり、また高速道路等でETCとともに安全運転支援やダイナミックルートガイダンスを提供するITSスポットも2011年に実用化され、路側機が全国配備され、車載器は2014年2月で約20万台に到達した。

政府は、2010年5月のIT戦略本部における「新たな情報通信技術戦略」、2011年8月の「ITSに関するロードマップ」（2012年7月改訂）につづき、2013年6月に「世界最先端IT国家創造宣言」を出して「健康で安心して快適に生活できる、世界一安全で災害に強い社会」を目指し、車・道路・人のタイムリーな情報交換、地図情報や車・人の位置情報等の地理空間情報、ビッグデータ活用などITS技術の活用により「世界で最も安全で環境にやさしく経済的な道路交通社会」を実現するとし、府省横断ロードマップを策定し推進体制を構築して、高度運転支援技術・自動走行システムの開発・実用化等を推進するとした。

EC（*4）はC-ITS早期実用化をめざし2002年以降、2007年度からの第7次FPまでに約40のITS関連の研究・開発プロジェクトに約1億8000万ユーロ以上の資金を投資してきた。第7次FPではプロジェクトの主体をFOT（*5）においてTeleFOT、DriveC2X、FOTsis等のプロジェクトを進めるとともに、特にDriveC2XはドイツのSimTD、フランスのSCORE@Fなどの各国のFOTプロジェクトと共通プラットフォームのもとで協調して進められた。2012年には、サプライヤ等も含む自動車業界中心のC-ITS推進の民間コンソーシアムであるC2C-CC（*6）における2015年C-ITS実用化のカーメーカ間の覚書締結や、C-ITS推進の官民コンソーシアムであるAmsterdam Group（*7）における同様の実用化展開計画の合意がととなり、オランダ＝ドイツ＝オーストリアを結ぶC-ITSコリドーの2015年からの実用化が2013年6月にブリュッセルで3国運輸大臣間で合意されるとともに、これ以外の主要国でも同年代からの国ごとのC-ITSコリドー実用化が計画されるなど、欧州はC-ITS実用化に向けて具体的に動き始めた。今後の研究開発においては、FP7の最終募集Call10で自動運転に関
するものが多く出てきているとともに、次期Horizon2020においても自動運転に関するものが出ているなど、欧州もC-ITSの次世代として自動運転に関心を強めている。

米国では、USDOT（米国運輸省）が2009年12月にITS総合開発プランであるITS Strategic Research Plan 2010-2014を発表し、その中でITSの研究に毎年100百万ドルを、特にIntelliDriveに49百万ドルを投資とした。

C-ITSの標準化に関しては、日本は各システムに関係する団体や機関が仕様を検討し、ISO/TC204の関連各WGを引き受けるかWGに参画する形でC-ITS担当のWG18と調整しつつ国際標準化を進めている。欧州は2009年10月にECのDG-ENTR（*11）が汎欧州での相互運用性を確保すべくC-ITSの欧州標準の最小限のセット（Release1）を策定するEC指令（M/453）を出し、標準化組織であるCEN（*12）とETSI（*13）がこれを受諾し2012年7月を最終報告書の期限として標準化を進めてきた。上記最終報告書はCENの標準化の遅れで2013年7月に約200項目のRelease1リストとして示されたが、実際のRelease1の完成は2014年度中ぐらいにずれ込む見通しである。ウィーン協定に基づきCEN、ISOは標準を相互承認することとなっておりC-ITS標準化を担当するCEN/TC278/WG16に対応する形式でISO/TC204/WG18が標準化に当たっているが、CENの動きが遅いため、日本がコンピーナを行っているWG3やWG14はETSIとも協調して標準化を進めている。

C-ITSのグローバル化を目指し、2011年には欧州ECのDG-CONNECT（*14）、米国USDOTのRITA、日本の国土交通省道路局の間で覚書による日米欧3極の協調体制が整ったが、実際の体制は欧米協調時に設定された体制に日本が参加する形となっている。現状、C-ITSの協調は3つのTFと7つのWGで行われ、日本は3つのWGに参画し、標準化の協調はこの内のTrilateral Standardisation Harmonization WGで6つのHTG（*15）を設置して標準化協調が行われている。

日本自動車研究所においては平成21～23年度の「ITS車載システムの標準化に関する調査研究」（以下、ITS車載SAと呼称）において、安全系や効率・環境、快適・利便系のアプリを統合的に提供するC-ITSの想定アプリの整理と定義、想定アプリを実現するデータ
辞書案の策定、想定アプリの実行に必要なメッセージ案の作成を行うとともに日米欧のC-ITSの主要なメッセージ規格の比較分析を行った。また、平成24年度の「ITS車載システムの標準化に関する検証」では日米欧のC-ITSのFOTや標準化動向の調査結果をもとにC-ITS想定アプリとデータ辞書案の検証を行った。

今年度は、ISO/TC204に対するC-ITSの国際標準化提案や欧米の標準化活動に対して、我が国の意見を積極的に提案するため、日米欧のC-ITSに関する研究、開発、実用化や標準化の最新動向を分析するとともに、C-ITSで伝達される情報内容に関する、欧米規格化状況の調査や規格化資料の収集・分析を行う。また、かかる分析結果をもとに昨年度までに策定・改訂した想定アプリやメッセージ案、データ辞書案の検証とその結果をもとにした必要な修正を行うとともに、国際標準化活動や各システムの仕様検討材料として分析結果をITS_Japanのインフラ協調委員会、ITS情報システム推進会議、ASVやDSSSなどのC-ITS関係者に供した。

*1：C-ITS：Cooperative-Intelligent Transport Systems 協調高度道路交通システム
*2：DSRC：Dedicated Short Range Communication 狭域通信
*3：COM(2011)144 WHITE PAPER Roadmap to a Single European Transport Area – Towards a competitive and resource efficient transport system
*4：EC：European Commission 欧州委員会
*5：FOT：Field Operation Test
*6：C2C-CC：Car2Car Communication Consortium
*7：2011年にCEDR（道路管理者の団体）、ASECAP（道路オペレータの団体）、POLIS（地方公共体の団体）、C2C-CCで結成
*8：RITA：The Research and Innovative Technology Administration 調査・革新技術庁
*9：VII：Vehicle Infrastructure Integration
*10：National Highway Traffic Safety Administration 米国運輸省道路交通安全局
*11：DG-ENTR：Enterprise and Industry 産業・企業総局
*12：CEN：European Committee for Standardization 欧州標準化委員会
*13：ETSI：European Telecommunication Standards Institute 欧州電気通信標準化機構
*14：DG-CONNECT：Communications Networks, Content and Technology 通信ネットワーク・コンテンツ・技術総局
*15：Harmonization Task Group
1.2 C-ITS 国際標準化検討のための分析・検証の概要

1.2.1 C-ITS とその標準化に関する日米欧状況まとめ

(1) 欧米および日本における C-ITS の経緯と最新の状況

欧米と日本における C-ITS の研究・開発、実用化に関する政府の施策や C-ITS 関連プロジェクトの最新動向を概説するとともに、主要なプロジェクトの状況につき詳述した。

(2) C-ITS の標準化に関する状況まとめ

C-ITS の統合的な標準化作業が行われた欧州 M/453 の最終報告の概要と C-ITS 標準化の状況を概説するとともに、現状課題となっている米国および欧州の C-ITS 周波数帯の WiFi 共用問題の現状を概説した。

1.2.2 C-ITS プラットフォームの検証

(1) 検証に用いた主な欧州 C-ITS 標準の概要

欧州の C-ITS アプリ仕様規格である ETSI TS 101539-1 (RHS オプション)，ETSI TS 101539-3 (LCRW アプリ)，主要メッセージ規格の EN 版である ETSI EN 302 637-2 (CAM)，ETSI EN 302 637-3 (DENM)，共通データ辞書規格である ETSI TS 102894-2 の概要と分析結果をまとめた。

(2) C-ITS のアプリ整理案，メッセージ案，データ辞書案の検証

欧州のアプリカタログや規格に記載のアプリ、欧米の FOT におけるアプリ分析結果を基にした想定アプリの検証、欧州の EN 版メッセージ CAM，DENM 分析結果をベースとした JARI メッセージ案の検証、欧州の EN 版メッセージ CAM，DENM および欧州共通データ辞書分析結果をもとにデータ辞書案の検証を行うとともに、検証結果をもとにデータ辞書案を改訂し、さらに詳細な定義や構造表を加えて、協調システムの関係者が使いやすいよう第 3 版としてまとめた。
第2章 C-ITSとその標準化に関する日米欧状況まとめ

日本自動車研究所においては、前述したように昨年度までC-ITSの想定アプリの整理と定義、想定アプリを実現するデータ辞書案の策定、想定アプリの実行に必要なメッセージ案の策定を実施するうえで日米欧のC-ITSに関する施策や動向を調査してきた。今年度も、ISO/TC204に対するC-ITSの国際標準化提案や欧米の標準化活動に対して、我が国の意見を積極的に提案するため、昨年度までに策定し改訂してきた上記想定アプリやメッセージ案、データ辞書案の検証とその結果をもとにした修正を行う上で必要な日米欧のC-ITSに関する研究、開発、実用化の最新動向を、2013年度に実施のITS世界会議東京、欧州のC2C-CC Forum、ETSIのTC-ITS Workshop、関連機関の委員会への参加やWEB等で調査した。

ここでは、欧米と日本におけるC-ITSの研究・開発、実用化に関する政府の施策やC-ITS関連プロジェクトの現在までの経緯と動向を概説するとともに、現在までに行われた注目すべき主要プロジェクトにつき詳述し、C-ITSに関する状況としてまとめた。

2.1 欧米および日本におけるC-ITSの経緯と最新の状況

2.1.1 欧州におけるC-ITSの経緯と最新の状況

(1) 欧州におけるC-ITS施策の経緯

<table>
<thead>
<tr>
<th>08</th>
<th>2009</th>
<th>2010</th>
<th>2011</th>
<th>2012</th>
<th>2013</th>
<th>2014</th>
<th>2015</th>
</tr>
</thead>
<tbody>
<tr>
<td>ITS施策</td>
<td>ITS施策</td>
<td>ITS施策</td>
<td>ITS施策</td>
<td>ITS施策</td>
<td>ITS施策</td>
<td>ITS施策</td>
<td>ITS施策</td>
</tr>
<tr>
<td>開発</td>
<td>開発</td>
<td>開発</td>
<td>開発</td>
<td>開発</td>
<td>開発</td>
<td>開発</td>
<td>開発</td>
</tr>
<tr>
<td>周波数</td>
<td>周波数</td>
<td>周波数</td>
<td>周波数</td>
<td>周波数</td>
<td>周波数</td>
<td>周波数</td>
<td>周波数</td>
</tr>
<tr>
<td>ITS施策</td>
<td>ITS施策</td>
<td>ITS施策</td>
<td>ITS施策</td>
<td>ITS施策</td>
<td>ITS施策</td>
<td>ITS施策</td>
<td>ITS施策</td>
</tr>
<tr>
<td>標準化</td>
<td>標準化</td>
<td>標準化</td>
<td>標準化</td>
<td>標準化</td>
<td>標準化</td>
<td>標準化</td>
<td>標準化</td>
</tr>
<tr>
<td>研究開発</td>
<td>研究開発</td>
<td>研究開発</td>
<td>研究開発</td>
<td>研究開発</td>
<td>研究開発</td>
<td>研究開発</td>
<td>研究開発</td>
</tr>
<tr>
<td>C-ITS標準化指令 M/453</td>
<td>C-ITS標準化指令 Release1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>最終報告</td>
<td>最終報告</td>
<td>最終報告</td>
<td>最終報告</td>
<td>最終報告</td>
<td>最終報告</td>
<td>最終報告</td>
<td>最終報告</td>
</tr>
<tr>
<td>交通白書(COM(2011)144)</td>
<td>交通白書(COM(2011)144)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>5.9GHz帯ITS確保</td>
<td>RLAN共用化検討指令</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

図2.1.1-1 欧州C-ITSの全体概要とその傾向
輸送エリアは EU の GDP の 10%、総従事者の 5%、年間輸出 700 億ユーロを占める欧州の原動力であり、この革新には様々な C-ITS サービスが必要であると EC の DG-CONNECT は述べている。図 2.1.1-1 に欧州の C-ITS の施策や研究開発等の全体概要とその傾向を示した。

① 道路、交通、旅行データの最適利用
② 交通・物流管理の ITS サービスの連続性
③ ITS 道路安全とセキュリティアプリケーション
④ 車両の輸送インフラへのリンク
⑤ データのセキュリティと保護、法的責任
⑥ 欧州の ITS 導入の協力と協調

このアクションプランにおいては C-ITS に関する開発や、実用化に関するアクションが多く見られ、特に“車両の交通インフラへの統合”においては具体的アクションとして
- オープン車載プラットフォーム・アーキテクチャ
- C-ITS の開発・評価
- C-ITS の規格定義
- C-ITS に関する欧州標準化指令

が示されている。上記の内 C-ITS に関する欧州標準化指令は M/453 として 2009 年 9 月に欧州標準化機構に対し公布された。本詳細は 2.2.1 項に後述する。

本指令ではアプリやサービス展開は各国に任せるものの、EC が欧州域内での優先分野 ITS サービスの展開と運用のための互換性、相互運用性、連続性を保証する必要な仕様を一元化することとしている。指令は以下の6つの優先アクションを規定している。

①汎欧州マルチモーダル旅行情報サービスの提供
②汎欧州リアルタイム道路交通情報サービスの提供
③道路交通関連最小ユニバーサル交通情報提供のためのデータと手順
④相互運用可能な汎欧州 eCall の調和された提供
⑤トラックと商用車の安全でセキュアな駐車場情報サービスの提供
⑥トラックと商用車の安全でセキュアな駐車場予約サービスの提供

また、指令は優先分野に関する各国活動に関するレポートを 12 ヶ月以内に、5 年間のアクションプランを 2 年以内に提出するよう加盟国に要求しており、ドイツ、フランス、オランダ、
オーストリア、スウェーデン等11カ国がイニシャルレポートを、フランス、オランダ、ギリシャの3カ国が5年間計画をそれぞれ提出している（2013年6月時点）

2010年5月に出された欧州2020戦略の主要なキーであるDAE（*2）でも交通の効率性と移動性向上のためのITSの有効性が議論されている。
ECのDG_MOVE（*3）は2011年3月に交通白書（*4）を出した。交通白書では現状の交通の課題を提起した上で、2050年に至る競争力と持続可能性を持つ交通システムのビジョンとそのための10の目標や4つの“i”に分類された40のアクションが示されており、そのアクション中にもC-ITSに関するものがちりばめられている。以下に10の目標の内、道路交通に関するものと4つの“i”アクションを示した。

10の目標（抜粋）
● 新しい持続可能燃料と推進システムの開発、展開：
 - 2030年までに都市交通における従来燃料車を半減、2050年までに段階的に廃止
 - 2050年までにCO2排出量を60%削減、2020年までに20%削減（2008年度比）
● より良いエネルギー效率モードの使用を盛り込んだマルチモーダル物流チェーンの最適化：
 - 2030年までに完全機能のEU全体マルチモーダルTEN-Tコアネットワーク整備
● 情報システムとマーケットベースインセンティブ輸送効率とインフラ利用効率を向上
 - 2020年までに欧州マルチモーダル交通情報管理・決済システムの枠組みを確立
 - 2050年までに道路交通における死者を限りなく0に、2020年までに道路死傷者を半減しEUが全モードの安全安心な交通のワールドリーダーに
 - “user pay”、“polluter pay”原則のアプリによる収入増と将来交通投資のための財源化

4つの“i”アクション
● Internal market：
 交通モードと各国システム間の障壁の排除による欧州単一輸送エリアの形成
● Innovation：
 研究領域における統合的方法での研究、革新、開発のサイクルの取組みの必要性
● Infrastructure：インフラ政策における輸送コストを考慮した共通的ビジョンと十分なソース確保
● International：
 輸送サービス、製品や投資における3国市場開放の最優先化

*1：平成24年3月「ITS車載システムの標準化に関する調査研究報告書」第2章2.1.1参照
*2：DAE：Digital Agenda for Europe
*3：Mobility and Transport DG モビリティ・運輸総局
*4：Roadmap to a Single European Transport Area – Towards a competitive and resource efficient transport system, WHITE PAPER COM(2011)144
(2) 欧州におけるC-ITS研究開発：FP7、CIPとHorizon2020

FP（*1）は欧州の技術開発の枠組みであり、FP7（第7次FP）は2007年から2013年で図2.1.1-2に示すようにFP6の約6倍に当たる総予算532億ユーロをかけてCooperation、Ideas、People、Capacities、Euratom、JRCの6プログラムが実施された。内、Cooperation（提携活動）は324億ユーロと予算の約2/3にあたりEU、第3国の組織でコンソーシアムを形成し共同研究を行うもので、10分野を特定している。C-ITSの関係分野は主に情報通信技術（ICT）と交通（TRANSPORT）である。FP7への参加は企業のみでなく、大学、研究機関、業界団体、政府・公共機関、個人研究者を許容しており、第3国の組織、研究者や国際組織も参加可能（EU以外の第3国組織は別途参加条件あり）である。

FP7は2013年から以下の3テーマで総額80Mユーロの最終募集Call10が行われて、現在はこの関連のプロジェクトが実施されている。

● FP7：Call10（FP7-ICT-2013-10）；協調モビリティ；25Mユーロ
 ・統括自動走行（開発とデモ）
 ・調整と支援のアクション

● FP7：CallSmartCities（FP7-SMARTCITIES-2013）；スマートシティのための統合型パーソナルモビリティ；15Mユーロ
 ・車載プラットフォームと交通管理を含む情報の管理と交換のための変換技術

● CallPPP-GC（GC-ICT-2013.GC）グリーンカー：エレクトロモビリティ；40Mユーロ
 ・FEVのための高度システムアーキテクチャ
 ・包括エネルギー管理
 ・調整と支援のアクション

Call10では、最近Google等で話題を集めている自動走行や、スマートシティ、EV関連のプロジェクトが中心となっている。

CIP（*2）は中小企業（SME）のICTとエネルギー効率に関する革新型アクティビティ支援プログラムであり、2007年～2013年にかけて総額36億ユーロでEIP（*3）、ICT-PSP（*4）、IEE（*5）の3プログラムが実施された。内、C-ITSはICT-PSPの範疇でありCompass4D、COSMO、HeERO、HeERO2といったC-ITSパイロットプロジェクトやICT4EVEU、MOLECULES、smartCEMといったEV関連のプロジェクトがある。
C-ITSの研究開発はICT関係の第7次FPとCIPプロジェクトの計340Mユーロのうち、既に約150Mユーロをかけ、最終段階に入っている。EUの研究開発プログラムFP7およびCIPの内、C-ITSに関わるものを図2.1.1-3に示した。

図2.1.1-3 欧州のC-ITS研究・開発プロジェクト（出典：20th ITS World Congress）

FP7では安全や環境に関わるC-ITSの実用化を踏まえたFOTのプロジェクトに重点的に予算が割り当てられた。かかるFOT関連プロジェクトにおいては、実質的にFOTを行うプロジェクトとは別に、FOTの計画と実施のために道路管理者、カーメーカー、システムプロバイダ等が参加し実施ガイドライン開発を行うコンソーシアムをサポートするプロジェクトや、各FOTの情報共有を図るプロジェクトなどが走り、欧州のFOTを支援していることが特徴的である。さらに、最終募集では自動走行に焦点が当てられ、欧州の研究開発は自立型運転支援システムからC-ITSである協調型運転支援システムの段階を経て、C-ITSの最終段階である自動運転システムにフォーカスされるつつある。

欧州のC-ITSに関するFP6、FP7、CIPの研究開発プロジェクトの内、着目すべきプロジェクトを表2.1.1-1に一覧した。図において「期間」はプロジェクトの開始年月〜終了年月を、「費用」は総費用/EU補助を、主な参加者の下線部はプロジェクトコーディネータを示す。またプロジェクト自体のWEBはプロジェクト完了後削除されたものもあるため、現状で資料等が確認可能なWEBを示している。なお、FP7ではEVに関わるプロジェクトも多いが、本表ではその大部分を省いている。

また、表2.1.1-1中の汎欧州C-ITSのFOTプロジェクトであるDriveC2Xでは、平行して
そのテストサイト国の国家プロジェクトも行われている。このうち主なものを表2.1.1-2に示した。
表2.1.1 欧州のC-ITS主要プロジェクト一覧

FP6

<table>
<thead>
<tr>
<th>プロジェクト</th>
<th>期間</th>
<th>費用</th>
<th>キーワード</th>
<th>内容</th>
<th>主な参加者</th>
<th>WEB</th>
</tr>
</thead>
<tbody>
<tr>
<td>PireVents</td>
<td>'04-'06</td>
<td>57.7M euro</td>
<td>行走支援</td>
<td>行走状況や実効した危険事象を検知し、事象を未然に防ぐ予防安全システムの開発・試験・評価。C-ITSのサブプロジェクト WILL-ARM あり。</td>
<td>DAIMLER, BMW, VOLVO, FORD, RENAULT, CRF, PSA, BOSCH, SIEMENS, INRETS</td>
<td>http://cordis.europa.eu/projects/roc/74686_en.html</td>
</tr>
<tr>
<td>GST</td>
<td>'04-'04</td>
<td>21.6 Meuro</td>
<td>情報通信</td>
<td>安全・効率・利用のための End-to-End データ通信システムを利用してのオープンかつ標準のアーキテクチャの策定</td>
<td>49 社・機関が加入</td>
<td>http://www.ericsson.com/gst-website</td>
</tr>
<tr>
<td>HIGHWAY</td>
<td>'04-'04</td>
<td>3.02 Meuro</td>
<td>地図・情報提供</td>
<td>実時速度情報や交通・気象のあらゆる情報を含むリアルタイム地図の開発と評価、音声合成/音声認識の組合せによる位置ベースの eSafety サービスの開発</td>
<td>TELEATLAS, CRF, MOTOROLA</td>
<td>http://cordis.europa.eu/projects/roc/71409_en.html</td>
</tr>
<tr>
<td>SEVECOM</td>
<td>'06-'08</td>
<td>4.7 Meuro</td>
<td>走行支援</td>
<td>車両通信における道路利用の分野、被害者、攻撃者のモデルと脆弱性研究と適切なレベルの保護を提供するアーキテクチャおよびセキュリティカリキュラムの策定</td>
<td>TRALOG, DAIMLER, EPFL, CRF, Philips</td>
<td>http://www.sevecom.org</td>
</tr>
<tr>
<td>GOODROUTE</td>
<td>'06-'08</td>
<td>4.9 Meuro</td>
<td>地図・ナビ</td>
<td>危険物運搬車両の経路モニタと経路変更が必要な場合の供与の強制変更とルートプラン策定協調システム開発</td>
<td>CERTH, CRF, IVECO, PT, TV, SIMENS 等 15 社・機関</td>
<td>http://www.good-route.eu</td>
</tr>
<tr>
<td>SAFESPOT</td>
<td>'06-'10</td>
<td>37.9 Meuro</td>
<td>行走支援</td>
<td>走行状況と周囲環境をリアルタイムで検知し、走行支援を行う自動車とナビゲーションシステムの開発</td>
<td>CRF, DAIMLER, RENAULT, VOLVO, BOSCH, TNO, IVECO, Kapsch, NAVTEQ</td>
<td>http://www.safe-spot.eu</td>
</tr>
<tr>
<td>COOPERS</td>
<td>'06-'10</td>
<td>16.8 Meuro</td>
<td>安全駆動系</td>
<td>安全と交通管理、講演等のための交通状況、インフォメーションをリアルタイムに測定し、道路間の通信を通じた交通の協調により自動車の安全性を向上させる</td>
<td>AUSTRAITECH, BMW, NAVTEQ 等 40 社・機関以上</td>
<td>http://www.coopers-ip.eu</td>
</tr>
<tr>
<td>CVIS</td>
<td>'06-'10</td>
<td>41.2 Meuro</td>
<td>情報通信</td>
<td>走行中の状況と周囲の可視・不可視なマルチモニターロール、高速度情報提供、ローカル/リモートの視覚情報などの変換開発</td>
<td>OMG, IVECO, NAVTEQ</td>
<td>http://www.navi.org</td>
</tr>
<tr>
<td>MYCAREVENT</td>
<td>'04-'10</td>
<td>16.0 Meuro</td>
<td>リモートディスプレイ</td>
<td>自動車のダイヤルや操作情報を車内ディスプレイに表示するアプリ、サービスの開発</td>
<td>CERTH, CRF, DAIMLER, RENAULT, VOLVO, BOSCH, Q-FREE, SIEMENS 等 60 社・機関以上</td>
<td>http://cordis.europa.eu/projects/roc/71888_en.html</td>
</tr>
<tr>
<td>FEEDMAP</td>
<td>'08-'08</td>
<td>3.6 Meuro</td>
<td>地図更新</td>
<td>車両からの up データ情報によるデジタル地図の更新に関わる開発</td>
<td>ERTICO, NAVTEQ, TELE ATLAS, BMW, DAIMLER, CRF, VOLVO, NAVIGON</td>
<td>http://cordis.europa.eu/projects/roc/80583_en.html</td>
</tr>
</tbody>
</table>

FP7&CIP

<table>
<thead>
<tr>
<th>プロジェクト</th>
<th>期間</th>
<th>費用</th>
<th>キーワード</th>
<th>内容</th>
<th>主な参加者</th>
<th>WEB</th>
</tr>
</thead>
<tbody>
<tr>
<td>FESTA</td>
<td>'07-'11</td>
<td>2.1 Meuro</td>
<td>FOT 支援</td>
<td>FOT 機能を評価する FOT の計画と実施のための実施ガイドライン開発を行うコンソーシアムのサポート</td>
<td>DAIMLER, RENAULT, CRF, IVECO, Kapsch, NAVTEQ</td>
<td>http://www.its.it/files/festa/index.php</td>
</tr>
<tr>
<td>SAFERIDER</td>
<td>'08-'10</td>
<td>5.4 Meuro</td>
<td>二輪車協</td>
<td>二輪車に関する安全性システムの開発</td>
<td>CRF, DAIMLER, RENAULT, VOLVO, BOSCH, TNO</td>
<td>http://www.safe-rider.eu</td>
</tr>
<tr>
<td>EUROFOT</td>
<td>'08-'11</td>
<td>21.6 Meuro</td>
<td>FOT</td>
<td>欧州の道路交通構造を向上させる可能性を持つ新しいIntelligent Vehicle Systems の FOT の特定と調査による総合的な有効性と実現可能</td>
<td>FORD, DAIMLER, RENAULT, VOLVO, DELPH, CRF, TNO</td>
<td>http://www.eurofot-ip.eu/</td>
</tr>
<tr>
<td>E-FRAME</td>
<td>'08-'11</td>
<td>1.4 Meuro</td>
<td>アーキテクチャ</td>
<td>欧州 FRAME アーキテクチャの協調システムへの拡張</td>
<td>PZL, AUSTRIATECH, SIEMENS, PUB 等 7 社・機関</td>
<td>http://www.frame-on-line.net/</td>
</tr>
<tr>
<td>TELEFOT</td>
<td>'08-'11</td>
<td>14.4 Meuro</td>
<td>FOT</td>
<td>アクセディスタンをより提供された車載ノーマル化デバイス(ND)による利便・安全・効率・環境アーキテクチャの開発</td>
<td>VTT, CIDAUT, ORANGE, NAVTEQ, CRF 等 25 社・機関</td>
<td>http://www.telefot.eu/</td>
</tr>
<tr>
<td>Project</td>
<td>項目期間</td>
<td>費用</td>
<td>キーワード</td>
<td>内容</td>
<td>主な参加者</td>
<td>WEB</td>
</tr>
<tr>
<td>-----------------</td>
<td>-----------</td>
<td>-------</td>
<td>---------------</td>
<td>--</td>
<td>---------------------</td>
<td>--</td>
</tr>
<tr>
<td>FOTNET</td>
<td>'08-06</td>
<td>1.2Meuro</td>
<td>FOT 支援</td>
<td>適用状況および将来の国家, 欧州およびグローバルな(米国, 日本)の FOT の戦略ネットワークのための支援活動</td>
<td>ERTICO, POLIS,</td>
<td>http://www.fotnet.eu/</td>
</tr>
<tr>
<td>PRE-DRIVE</td>
<td>'08-07</td>
<td>8.5Meuro</td>
<td>FOT</td>
<td>指導、調査を通じたシステムの欧州共同プログラミングシステムの仕事と、機関確認プロトタイプの開発: DriveC2X の準備プロジェクト</td>
<td>DAIMLER, RENESAS,</td>
<td>http://www.pre- drive-c2x.eu/index.dhtml</td>
</tr>
<tr>
<td>EVITA</td>
<td>'08-07</td>
<td>5.9Meuro</td>
<td>セキュリティ</td>
<td>車両システムへの進化制御と損害データの外部への伝達を結びつけるセキュリティ要件の定義、セキュリティに関する利用モデルのコンポーネント, セキュリティに便携性を持つデバイス</td>
<td>FRAUNHOFER, BOSCH,</td>
<td>http://evita-project.org/index.html</td>
</tr>
<tr>
<td>ICAR SUPPORT</td>
<td>'09-12</td>
<td>2.1Meuro</td>
<td>実用化支援</td>
<td>eSafety ForumとIntelligent Car Initiativeから生じる実用化アクションと推奨に基づくサポーター</td>
<td>ERTICO, VTT, ACEA,</td>
<td>http://www.icarsupport.org/</td>
</tr>
<tr>
<td>INTERACTIVE</td>
<td>'10-01</td>
<td>26.7Meuro</td>
<td>運転支援</td>
<td>運転支援のためのユニバーサル構策ネットワークを、複数のネットワークを統合するシステムで実現する</td>
<td>FORD, VOLVO, CRF,</td>
<td>http://www.intactive-ip.eu/</td>
</tr>
<tr>
<td>CARS</td>
<td>'10-01</td>
<td>4.2Meuro</td>
<td>EV-隊列</td>
<td>小型EV、クリーンな都市自動車の短期間レンタルと、部分的に制御される車両の間での安全性の提供</td>
<td>LOHR, INDUCT, INRIA</td>
<td>http://www.cats-project.org/</td>
</tr>
<tr>
<td>ECOMOVE</td>
<td>'10-04</td>
<td>22.7Meuro</td>
<td>交通管理</td>
<td>協調システムを用いて、ルート、ドライバーアクティビティ、および実用展開を管理するため、燃料消費効率の最適化を可能にする</td>
<td>ERTICO, FORD, BMW,</td>
<td>http://www.ecomove-project.eu/</td>
</tr>
<tr>
<td>COSMOMOVES</td>
<td>'10-11</td>
<td>3.9Meuro</td>
<td>バイロット</td>
<td>I-V協調システムの欧州3箇所（サレルノ／イタリア、ウィーン／オーストリア、ヨーテボリ／スウェーデン）のユニバーサルバイロット</td>
<td>SWARCO, ASFINAG,</td>
<td>http://www.cosmomo-ve project.eu/</td>
</tr>
<tr>
<td>HERO</td>
<td>'10-01</td>
<td>10.3Meuro</td>
<td>eCall+FOT</td>
<td>レタリングに基づく欧州緊急コールサービス eCallのバイロット、Croatia, Czech Republic, Finland, Greece, Germany, Italy, The Netherlands, Romania, Swedenで実施</td>
<td>ERTICO, ADAG, NXP,</td>
<td>http://www.heer-pilot.eu/view/en/home</td>
</tr>
<tr>
<td>COMESAFETY</td>
<td>'11-01</td>
<td>3.0Meuro</td>
<td>コーディネート</td>
<td>欧州の道路における協調システムの実用化に資する活動のコーディネート</td>
<td>BMW, ERTICO, CRF,</td>
<td>http://www.comesafety.org/</td>
</tr>
<tr>
<td>DRIVE C2X</td>
<td>'11-01</td>
<td>18.9Meuro</td>
<td>FOT</td>
<td>欧州の様々な場所で様々な道のり環境、車両によるFOTを通じて、C-ITSを各国の独自プロジェクトと協調し、これらを組み合わせて、安全と利用を最適化するための試作を実施。</td>
<td>DAIMLER, DELPHI,</td>
<td>http://www.drive-c2x.eu/project</td>
</tr>
<tr>
<td>FOTNET2</td>
<td>'11-01</td>
<td>2.5Meuro</td>
<td>FOT 支援</td>
<td>FOTNET2の後継、FOT製造関係者ミーティングを半年に1回、国際FOTミーティングを毎年実施する</td>
<td>ERTICO, POLIS,</td>
<td>http://www.fotnet2.eu/</td>
</tr>
<tr>
<td>PRESERVE</td>
<td>'11-01</td>
<td>5.4Meuro</td>
<td>セキュリティ</td>
<td>V2Xシステムのためのセキュリティとプライバシーのシステムを提供とフィードバック試験による現実に近いセキュリティとプライバシー維持されたV2X通信の提供</td>
<td>UNI TWENTE, RENAULT,</td>
<td>http://www.preserve-project.eu/</td>
</tr>
<tr>
<td>ITSSV6</td>
<td>'11-02</td>
<td>2.5Meuro</td>
<td>通信</td>
<td>協調システムFOTにおけるIPv6インターネット通信の使用における欧州の技術、産業、アカデミーが実動化に向けた自動制御システム、IPv6 ITSステーションスタッドを開発</td>
<td>INRIA, LESSWIRE等</td>
<td>http://www.itssv6.eu</td>
</tr>
<tr>
<td>FOTIS</td>
<td>'11-04</td>
<td>13.8Meuro</td>
<td>FOT</td>
<td>実用化に近いV2V、V2I技術（FOTis サービス）の操作に必要な協調通信インフラ管理システム、欧州の道路における実用展開の効果と展開可能性の詳細評価</td>
<td>INDIUM, ASECAP, FIA,</td>
<td>http://www.fotiss.com/</td>
</tr>
<tr>
<td>V-CHARGE</td>
<td>'11-06</td>
<td>8.7Meuro</td>
<td>EV・自動運転</td>
<td>指定地域（パリ、ベルニャーヴィ、ウールマーセ）での自動運転を考え、都市環境における高速度での共有化を支えるためのスマートカーチャンネルの開発</td>
<td>UNI ETH, ZURICH,</td>
<td>http://www.v-charge.eu/</td>
</tr>
<tr>
<td>CITYMOBIL2</td>
<td>'12-09</td>
<td>18.0Meuro</td>
<td>EV・自動運転</td>
<td>CityMobileの実用化ためのハンズフリー、法的フレームワーク、経済的効果の記録、12都市の5ケースについて7セットの自動化車両で6ヶ月のデモ評価</td>
<td>UNI CTI, EPFL, DLR,</td>
<td>http://www.citymobil2.eu/en/</td>
</tr>
</tbody>
</table>
表 2.1.1-2 DriveC2X に協調する各国の C-ITS FOT プロジェクト

<table>
<thead>
<tr>
<th>国</th>
<th>Project</th>
<th>期間</th>
<th>費用</th>
<th>内容</th>
<th>主な参加者</th>
<th>WEB</th>
</tr>
</thead>
<tbody>
<tr>
<td>ドイツ</td>
<td>SimTD</td>
<td>'08-9</td>
<td>70Meuro</td>
<td>C2X 通信を用いた交通状況の向上に向けた実装およびプラットフォームの構築</td>
<td>Audi, BMW, DAIMLAR, Ford, OPEL, BOCHS, VOLKSWAGEN, CONTINENTAL 等 17 社・機関</td>
<td>http://www.simtd.de/index.dhtml/194f28a2264040045g/-/enEN/-/CS/=-/</td>
</tr>
<tr>
<td></td>
<td></td>
<td>'13-6</td>
<td>20Meuro (BMW, BMBF, BMVBS)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>フランス</td>
<td>SCORE#F</td>
<td>'10-9</td>
<td>5.6Meuro</td>
<td>協調型の道路交通安全の向上および実装を検証</td>
<td>RENAULT PSA, HITACHI, UTAC, SENDA, ORANGE, EUROCOM, INRETS, INRIA 等 19 社・機関</td>
<td>http://wiki.fot-network.org/Score#F</td>
</tr>
</tbody>
</table>
EC は劇的に変化した経済環境において欧州の研究、開発の革新をはかるため前述の交通白書に従い、2011年11月に研究革新プログラム Horizon2020（*6）を提示した。Horizon2020 は欧州の 3 プログラム／イニシアティブである FP7、CIP、EIT（*7）を統合し、2014年～2020年に予算規模約800億ユーロで以下の3つの課題にフォーカスして、唯一のプログラムで全てのEU研究開発をEITをリンクの核にして実施するものである。

- Excellent science：欧州を科学研究のリーダに（246億ユーロ）
- Industrial leadership：工業技術における革新のリーダーシップ（179億ユーロ）
- Societal challenges：6つの社会的テーマ（317億ユーロ）

上記のSocietal challengesの6テーマのうちの一つは“Smart, green and integrated transport”でありこれに68億ユーロ（内EIT分2億ユーロ）が割り当てられている。

また、COSME は Horizon2020 の補足的プログラムとして、中小企業（SME）への融資を容易にして、その起業と成長のための環境整備を行い、EUの中小企業の競争力を強化し、自国外への展開を支援する、CIPの後継プログラムであり25億ユーロが割り当てられている。

Horizon2020は2013年Midの議会承認を経て2014年1月より最初の募集（Call 1）が開始されているが、この募集においてもC-ITSや自動運転関連のテーマが出されている。C-ITSや自動運転に関わる研究開発はFP7のCall10のプロジェクト期間を残しつつも、2014年度からは順次Horizon2020のCallプロジェクトにて実施されることとなる。

*1：FP；Framework Programme
*2：CIP；Competitiveness and Innovation Framework Programme
*3：EIP；The Entrepreneurship and Innovation Programme
*4：ICT-PSP；The Information Communication Technologies Policy Support Programme
*5：IEE；The Intelligent Energy Europe Programme
*7：European Institute of Innovation and Technology；EU内の大学や研究機関をキャンパスレスでネットワーク化して産学官の人員、知識やノウハウ等を集中する欧州工科大学 （http://eit.europa.eu/）
(3) 欧州における C-ITS 実用化の動き

情報提供、注意喚起レベルの C-ITS は FOT をへて実用化段階に入っている。本報告では、TERN (*1) における汎欧州 ITS 配備のプロジェクト EASY WAY、Amsterdam Group が主導した C-ITS コリドーと FP7 のプロジェクトでもある COMPASS4D、および 2015 年 10 月より搭載義務付けの eCall システム (*2) に関する FP7 のパイロットプロジェクト HeERO & HeERO2 につき詳述する。

① EASY WAY（http://www.easyway-its.eu/）

TERN における汎欧州 ITS 配備の統合プロジェクト EASY WAY は図 2.1.1-4 に示すように道路安全向上、移動性向上と渋滞低減、環境への交通負荷軽減を目的とした C-ITS を、27 加盟国（アクティブメンバー：22、オブザーバ：5）を図 2.1.1-5 に示す 8 地域に分割して配備するものである。

プロジェクトは加盟各国の道路局、道路運用者と、カーメーカ、通信事業者やサービスプロバイダなどを含む他の関係者との緊密な協力で遂行され、Easy Way2 では表 2.1.1-3 に示す 4 つの活動領域の 11 のサービスが対象とされた。また、Easy Way3 のキーサービスとしてはリアルタイム旅行者情報、コモーダル旅行者情報、事故管理、セグメントの管理、インテリジェントトラック駐車、協調サービスが含まれている。これで、協調サービスはパイロット段階の 7 つの優先サービスである危険場所通知、前方渋滞警告、工事場所警告、分散型 FCD、交通情報と推奨旅程、車内標識表示、駐車管理を束ねたものである。

また、EASY WAY では実用化展開のため、図 2.1.1-6 に示すような旅行者情報サービス（6 冊）、交通情報サービス（7 冊）、物流サービス（2 冊）のガイドラインを作成している。
表 2.1.1-3 Easy Way2 コアサービス：4つの活動領域の 11 のサービス

<table>
<thead>
<tr>
<th>活動領域</th>
<th>コア ITS サービス</th>
</tr>
</thead>
<tbody>
<tr>
<td>汎欧州交通情報サービス</td>
<td>旅行者情報（旅行前・旅行中）</td>
</tr>
<tr>
<td></td>
<td>コモーダル旅行者情報</td>
</tr>
<tr>
<td></td>
<td>可変メッセージ標識調和</td>
</tr>
<tr>
<td>汎欧州交通管理サービス</td>
<td>センシティブな道路セグメントの管理</td>
</tr>
<tr>
<td></td>
<td>回廊交通とネットワーク管理</td>
</tr>
<tr>
<td></td>
<td>事故管理サービス</td>
</tr>
<tr>
<td>貨物物流</td>
<td>インテリジェントトラック駐車</td>
</tr>
<tr>
<td></td>
<td>特殊・危険物規制アクセス</td>
</tr>
<tr>
<td>ICT インフラ接続</td>
<td>サービスのためのモニタリング</td>
</tr>
<tr>
<td></td>
<td>交通センターとデータ交換</td>
</tr>
</tbody>
</table>

図 2.1.1-6 EASY WAY のサービスガイドライン
（出典：EASY WAY WEB；http://www.easyway-its.eu/deployment-guidelines/）

②オランダ・ドイツ・オーストリア C-ITS コリドーとフランス C-ITS コリドー
欧州のカーメーカー主体の C-ITS 推進のコンソーシアム C2C-CC は 2012 年 10 月に 2013 年まで C2C-CC の GM であった Soren Hess 名で図 2.1.1-7 に示す MoU 署名をリリースした。この MoU は C2C-CC の 12 カーメーカが 2015 年に C-ITS を実用化し、交通および輸送をより安全で、より持続可能で、より快適にするための共同ガイドラインに従うことを定めている。MoU では EU 指令 M/453 のもとに開発されているメッセージフォーマット、タイミングやセキュリティ要件といった規定の技術仕様を考慮し、同時に C-ITS の実用化と展開の緊急な必要性を指摘した 2010 年 7 月の EU 指令にも対応するとしており、基盤技術、実用化開始、ユースケースを合意事項としている。
また、V-VだけでなくI-Vのサービスが必要で、C-ITSの実用化成功には全ての関係者、例えばサプライヤ、インフラ製造者、道路事業者、交通管制センター、サービスプロバイダ、公共セクターなどの協力とコミットメントが必要と述べている。

MoUでは以下の4段階の実用化戦略を示している。

- **phase1**: Day-1ユースケースのメッセージ作成、マスマーケットでの費用効率、警告/効率アプリ
- **Phase2**: より複雑なユースケースDay-2（ex: 交差点衝突警報、二輪車接近警報）
- **Phase3**: C2Xと環境センサ情報の結合による自動化支援システム
- **phase4**: ユースケースのシームレスな組合せ

表2.1.1-4にMoUで記載のDay-1ユースケースを示した。

表2.1.1-4 C2C-CCのMoUにおけるDay-1ユースケース

<table>
<thead>
<tr>
<th>Use Case</th>
<th>Domain</th>
<th>Other Stakeholders required</th>
<th>Comm. Medium</th>
</tr>
</thead>
<tbody>
<tr>
<td>Emergency Vehicle Warning</td>
<td>Safety</td>
<td>Essential</td>
<td>ITS G5</td>
</tr>
<tr>
<td>緊急車両警報</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Emergency Brake Light</td>
<td>Safety</td>
<td></td>
<td>ITS G5</td>
</tr>
<tr>
<td>緊急ブレーキ灯</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Stationary Vehicle Warning</td>
<td>Safety</td>
<td>-</td>
<td>ITS G5</td>
</tr>
<tr>
<td>停止車両警報V2X救援信号</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Traffic Jam Ahead Warning</td>
<td>Safety</td>
<td>-</td>
<td>ITS G5</td>
</tr>
<tr>
<td>前方渋滞警報</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>In Vehicle Signage (speed management)</td>
<td>Safety</td>
<td>-</td>
<td>ITS G5</td>
</tr>
<tr>
<td>標識車内表示（速度管理）</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Hazardous Location Warning</td>
<td>Safety</td>
<td>Support</td>
<td>ITS G5</td>
</tr>
<tr>
<td>危険箇所警報</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Contextual Speed Limit</td>
<td>Efficiency</td>
<td>Essential</td>
<td>ITS G5</td>
</tr>
<tr>
<td>（効率的速度限界）</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Road Work Warning (stationary and moving)</td>
<td>Safety</td>
<td>Essential</td>
<td>ITS G5</td>
</tr>
<tr>
<td>道路工事警報（静止および移動）</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Signal Violation Warning</td>
<td>Safety</td>
<td>Essential</td>
<td>ITS G5</td>
</tr>
<tr>
<td>（赤信号警報）</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Green Light Optimal Speed Advisory</td>
<td>Efficiency</td>
<td>Essential</td>
<td>ITS G5</td>
</tr>
<tr>
<td>青信号推奨速度アドバイス</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

有料道路事業者の団体ASECAP(*3)、道路管理者の団体CEDR(*4)、地方公共団体のネットワークPOLIS(*5)の3つのインフラ側の機関・団体と自動車側のC2C-CCは2011年にC-ITSの調和の取れた実用化と展開のための枠組み形成を目的としてボランティア団体Amsterdam Group（以下AG）（http://www.amsterdamgroup.eu/）を設立した。図2.1.1-8にAGの構成を示す。

AGは、欧州のC-ITSに関する調和の取れた統合的な実用化展開計画の開発で合意し2012年に図2.1.1-9に示すようにLetter of Intentを提示している。このLetter of Intentでは2015年C-ITS実用化を目指し、各位の共通目的を実現するためにパートナーシップで働くことを約束し、規則と責任、ロールアウト計画、HotSpot区域／地域、適用標準、Day1アプリ、投入計画、ビジネスモデルとB/C、他関係者の参加順、詳細実用化ロードマップ、データとサービスレベルの可用性・信頼性、情報管理・データフロー（C2I, C2C, I2C）法的
問題（賠償責任、セキュリティ、プライバシー）等での合意を今後検討するとしていた。

このように欧州のカーメーカとインフラ側はC-ITSの2015年度実用化に向けて歩調を合わせている。

かかる活動がベースとなり、2013年6月にルクセンブルグにてドイツ、オランダ、オーストリア政府が「Cooperative ITS Corridor Joint deployment」として2015年からのC-ITSインフラ配備の覚書に合意した。Cooperative ITS Corridorはロッテルダム＝フランクフルト＝ウィーン間の高速道路を手始めに、3国にAGのDay1アプリをシンプルなDay1サービスの初期配備から実施していく段階的な配備アプローチについて合意している。

AGは2013年9月にRoad Map AG（*6）を出し、AGが準備・計画中のC-ITS配備活動
について詳しく示している。Cooperative ITS Corridor については、図 2.1.1-10 に示すように、道路工事場所警告、プローブ（車両速度を道路工事場所の RSU に up; 道路工事場所での交通状態検知）を初期アプリとし、通信は IEEE802.11p と携帯系のハイブリッド通信コンセプトを適用する。すなわち、AG はタイムクリティカルな安全関連サービスでは ETSI ITS-G5 に基づく狭域通信にフォーカスし、タイムクリティカルでないバックエンドサービスでは 3G, 4G 等携帯系などの他の技術も利用する。

路側機の配備は、図 2.1.1-11 に示すようにドイツでは Hessen 州のフランクフルト近郊から Nordrhein-Westfalen 州、Rheinland-Pfalz 州、Baden-Württemberg 州、Bayern 州の高速道路へ広げ、最終的にはドイツ全土に広げるとしており、オーストリアではまず A4/S1 および A23 の高速道路から行うとしている。車両は、BMW、メルセデス、フォード、オペル、フォルクスワーゲンが提供を予定している。

Cooperative ITS Corridor の実用化ロードマップを表 2.1.1-5 に、AG の Day1 サービスを表 2.1.1-6 に示した。Day1 は以下にフォーカスしたサービスである。

- エンドユーザに利益を提供し、確実なビジネスモデルで支援され簡単で複雑でないサービス
- C-ITS のすべての環境（都市、田舎、都市間）を支援するバランスのとれたサービス
低／最小リスクで可能なサービス
信頼性を提供するサービス
速い浸透を支援し、他サービス配備のためのプラットホームを提供するサービス

各サービスの機能仕様とロードマップは AG と C2C-CC 間で連携し 2013 終わりまでに完予定である。

表 2.1.1-5 Cooperative ITS Corridor の実用化ロードマップ（出典：Road Map AG）

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>課題</td>
<td>Sep</td>
<td>Oct</td>
<td>Nov</td>
</tr>
<tr>
<td>Day1アプリの合意</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>技術規定の最終版</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>技術規格</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>CEN/ETSI作業Release1への貢献</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>完全性のためのRelease1分析</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Released2への貢献</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>システム仕様</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>関格プロトタイプ/リリース条件</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>システム仕様</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>分散斎制御</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ETSI STFでの確認のフォロー</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>STF結果の結果分析</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>S/Sアプリの変更とコンプライアンス確認のフォロー</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>CEN/ETSI作業Release2への貢献</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>完全性のためのRelease2分析</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>技術規格</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>技術規定の最終版</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>技術規格</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>システム仕様</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>関格プロトタイプ/リリース条件</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>システム仕様</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>分散斎制御</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ETSI STFでの確認のフォロー</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>STF結果の結果分析</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>S/Sアプリの変更とコンプライアンス確認のフォロー</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>CEN/ETSI作業Release2への貢献</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>完全性のためのRelease2分析</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

表 2.1.1-6 Amsterdam Group の Day1 サービス（出典：Road Map AG）

<table>
<thead>
<tr>
<th>V2V</th>
<th>I2V</th>
</tr>
</thead>
<tbody>
<tr>
<td>Hazardous location warning</td>
<td>Road works warning</td>
</tr>
<tr>
<td>Slow vehicle warning</td>
<td>In-vehicle signage</td>
</tr>
<tr>
<td>Traffic Jam ahead warning</td>
<td>Signal phase and time</td>
</tr>
<tr>
<td>Stationary vehicle warning</td>
<td>Emergency vehicle warning</td>
</tr>
<tr>
<td>Emergency Brake light</td>
<td>Emergency vehicle warning</td>
</tr>
<tr>
<td>Emergency vehicle warning</td>
<td>Motorcycle approaching indication</td>
</tr>
<tr>
<td>Motorcycle approaching indication</td>
<td>Road works warning</td>
</tr>
<tr>
<td>Stationary vehicle warning</td>
<td>Emergency vehicle warning</td>
</tr>
<tr>
<td>Traffic Jam ahead warning</td>
<td>Stationary vehicle warning</td>
</tr>
<tr>
<td>Hazardous location warning</td>
<td>Traffic Jam ahead warning</td>
</tr>
</tbody>
</table>

AG は利害関係者間で規格と ITS システム仕様を合意することで Day1 システムは技術的に相互運用可能としており、車両、ホットスポットエリア、コリドーでの RSU 設置だけの限定浸透でもユーザ利益はあるとしている。ただし、市場ニーズと関連ビジネスモデルを

—23—
考慮する必要があり、改装装置やアフターマーケット装置がC-ITS開発と浸透増加を支援し、C-ITS配備には利害関係者の自発的アプローチが重要としている。
また、米国で期待されるような、強制配備アプローチは実用化に長くかかり市場牽引にならないと考えている。

AGではグループで計画・準備の配備活動として上記のほかフランス（2015年〜）、スウェーデン（推定2016-17年〜）、ポーランド（推定2016-17年〜）、ポルトガル（推定2016-17年〜）の各コリドー計画とCOMPASS4Dプロジェクト等を上げている。

フランスC-ITSコリドー計画（SCOO@F）は2014〜2016年にPre-deploymentの位置づけで、図2.1.1-12に示すパリ郊外高速-A4-ストラスプール間の高速道で実施するもので、RENAULT、PSA、VOLVO等のカーメーカとサプライヤ、道路管理者や道路運用者等が参加する。サービスは車載器2000台以上（アフターマーケットデバイス）と路側機200台以上（固定；100台以上、移動：100台以上）で通信はDSRC-G5と3G/4G通信を用いる。標準はM/453のRelease1に準拠している。図2.1.1-13にSCOO@Fの車載システムと路側システムを示す。
③ Compass4D（＊7）
表 2.1.1-1 の欧州の C-ITS 主要プロジェクト一覧にも示したように、FP7 のプロジェクトではあるがパイロットの位置づけであり、以下の 3 つの欧米協調での合意サービスを図 2.1.1-14 の欧州 7 都市で 1 年間パイロットとして実施するものである。パイロットに用いる車両は計 334 台、ユーザは 570 人以上を予定している。
- FCW（Forward Collision Warning）：前方衝突警報
- RLVW（Red Light Violation Warning）：赤信号警報
- EEIS（Energy Efficient Intersection Service）：交差点エネルギー効率サービス

パイロットでは米国 RITA の Connected Vehicle の認証プログラムとリエゾンしつつ、認証フレームワークのセットアップに焦点を当てる。

以下に主要なサイトでのパイロットの概要を示す。
- ボルドー（フランス）：都市内および都市間のパイロット。
 都市内：大規模インフラと大規模商業地での重交通環境で実施。乗用車と配送トラックの混在環境での商品配送。
 都市間：ボルドーの環状道路で実施。見通し不良急カーブでの事故防止対応、RSU を都
市内交差点 10箇所と都市間交差点 3箇所に設置。OBU は車両 80 台に設置

● コペンハーゲン（デンマーク）：コペンハーゲン中央駅（コペンハーゲン中心部）と東ゲート駅（Osterport, 近郊鉄道のハブ駅）間のバス接続（68000 人／日が使用）の改善。21 台の RSU、3 台のカメラを設置。OBU を 100 台のバスに設置しバスドライバー 200 人が使用。

● ニューカッスル（イギリス）：Tyne and Wear pilot site。5 市にまたがるエリアで人口は 100万人以上。シーメンスと共同にて 20 の交差点での青信号速度アドバイスを実施。

● ヴェローナ（イタリア）：速度アドバイス（都市内）、交通渋滞に基づく前方衝突警報、赤信号違反警報。RSU を 25 台設置（ETSI G5）、車両 20 台（バス 10 台、市所有車 10台）に OBU 搭載、スマートフォン or タブレット（3G/LTE）を使用するユーザの車 30台（RSU がない区間での協調サービスの提供）

● ビーゴ（スペイン）：市への入り口に当たる 2 つのハイウェイ AP-9 と A-55 に配備。17 の交差点に RSU 配備。車両は 40 台（バス、タクシー、個人車両、緊急車両）

③ HeERO および HeERO2

同様に、表 2.1.1-1 に示したように、FP7 のプロジェクトではあるがパイロットの位置づけであり、HeERO1×HeERO2 で図 2.1.1-15 に示す計 15 カ国で E112 に基づく汎欧州緊急コールサービス eCall のパイロットを行うもので、2015 年からの欧州レベルでの eCall の相互運用に必要なインフラ準備を行うものである。

図 2.1.1-6 に欧州 eCall の構成を示すとともに、表 2.1.1-7 に eCall での送信データ最小セット (MSD) (CEN EN15722 に規定) を示す。MSD としてタイムスタンプ、自車位置 (GNSS) および走行方位、車両 ID_No, 推進形式、事故に関する情報が送信される。また、表 2.1.1-8 に eCall に関する標準一覧を示した。
表 2.1.1-7 eCall での送信データ最小セット（MSD）

<table>
<thead>
<tr>
<th>Block No.</th>
<th>Name</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Format version</td>
<td>MSD format version set to 1 to discriminate from later MSD formats</td>
</tr>
<tr>
<td>2</td>
<td>Message Identifier</td>
<td>incremented with every retransmission</td>
</tr>
<tr>
<td>3</td>
<td>Control</td>
<td>Automatic or manual activation, position trust indicator, vehicle class</td>
</tr>
<tr>
<td>4</td>
<td>Vehicle ID</td>
<td>VIN number according to ISO 3779</td>
</tr>
<tr>
<td>5</td>
<td>Fuel type</td>
<td>Gasoline, diesel, etc</td>
</tr>
<tr>
<td>6</td>
<td>Time stamp</td>
<td>Timestamp of incident event</td>
</tr>
<tr>
<td>7</td>
<td>Vehicle Location</td>
<td>Position latitude/longitude (ISO 6709)</td>
</tr>
<tr>
<td>8</td>
<td>Vehicle direction</td>
<td>2° degrees steps</td>
</tr>
<tr>
<td>9</td>
<td>Recent Vehicle Location n-1</td>
<td>Latitude/longitude Data</td>
</tr>
<tr>
<td>10</td>
<td>Recent Vehicle Location n-2</td>
<td>Latitude/longitude Data</td>
</tr>
<tr>
<td>11</td>
<td>No. of passengers</td>
<td>Minimum known number of fastened seatbelts omitted if no information is available</td>
</tr>
<tr>
<td>12</td>
<td>Optional additional data</td>
<td>e.g. passenger data</td>
</tr>
</tbody>
</table>
表 2.1.1-8 eCallに関する標準一覧

<table>
<thead>
<tr>
<th>Title</th>
<th>Number</th>
</tr>
</thead>
<tbody>
<tr>
<td>eCall requirements for data transmission</td>
<td>3GPP TS 22.101</td>
</tr>
<tr>
<td></td>
<td>ETSI TS 122 101</td>
</tr>
<tr>
<td>eCall Discriminator Table 10.5.135d</td>
<td>3GPP TS 24.008</td>
</tr>
<tr>
<td></td>
<td>ETSI TS 124 008</td>
</tr>
<tr>
<td>eCall Data Transfer; In-band modem solution; General Description</td>
<td>3GPP TS 26.267</td>
</tr>
<tr>
<td></td>
<td>ETSI TS 126 267</td>
</tr>
<tr>
<td>eCall Data Transfer; In-band modem solution; ANSI-C Reference Code</td>
<td>3GPP TS 26.268</td>
</tr>
<tr>
<td></td>
<td>ETSI TS 126 268</td>
</tr>
<tr>
<td>eCall Data Transfer; In-band modem solution; Conformance Testing</td>
<td>3GPP TS 26.269</td>
</tr>
<tr>
<td></td>
<td>ETSI TS 126 269</td>
</tr>
<tr>
<td>eCall Data Transfer; in-band modem solution; Characterisation Report</td>
<td>3GPP TS 26.969</td>
</tr>
<tr>
<td></td>
<td>ETSI TS 126 969</td>
</tr>
<tr>
<td>eCall minimum set of data</td>
<td>CEN EN 15722</td>
</tr>
<tr>
<td>Pan European eCall Operating Requirements</td>
<td>CEN EN 16072</td>
</tr>
<tr>
<td>High Level Application Protocols</td>
<td>CEN EN 16062</td>
</tr>
<tr>
<td>Data registry procedures</td>
<td>ISO/EN 24978:2009</td>
</tr>
</tbody>
</table>

*1: TERN; Trans-European Road Network。TEN-T（Trans-European Transport Networks）構想の一つ

*2: HeRO; Harmonised eCall European Pilot

2015年10月1日より全ての新車乗用車および小型商用車に112ベースのeCallシステムの搭載を義務付ける法律提案

*3: ASECAP; European Association with tolled motorways, bridges and tunnels (http://www.asecap.com/english/)

欧州の高速道路と道路インフラシステムの保持と開発、道路ユーザへの高品質ロードサービス、技術的・統計的データ収集と選定プロジェクトへの参画等が目的

*4: CEDR; Conference of European Directors of Roads (http://www.cedr.fr/home/)

欧州の道路管理者の団体で本部はフランスのパリ。24カ国が参加。

統合交通体系下の道路交通ネットワークの将来の発展への寄与、道路管理者の国際ネットワーク助成、共通問題への対応のためのプラットフォーム提供、道路管理システムに関する開発等が目的

*5: POLIS; European Cities And Regions Networking For Innovative Transport
Solutions（http://www.polisnetwork.eu/）
欧州の地方公共団体のネットワークで15カ国（Fullメンバーや53、Associateメンバーや5）で構成。ex Sweden／Gothenburg等、Germany／Berlin、Frankfurt、Stuttgart等、Netherlands／Amsterdam、Eindhoven等、France／Paris等、Italy／Milano、Rome等。交通の経済的、社会的、環境的次元での統合戦略による地方交通の技術および政策の開発と改良が目的

*6 : Roadmap AG : Roadmap between automotive industry and infrastructure organisations on initial deployment of Cooperative ITS in Europe Version 1.0

*7 : Compass4D : Cooperative Mobility Pilot on Safety and Sustainability Services for Deployment
2.1.2 米国における C-ITS の経緯と最新の状況

(1) 米国における C-ITS 施策の経緯

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>ITS 施策</td>
<td>ITS Strategic Research Plan</td>
<td>次期ITS SRP</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>周波数</td>
<td>5.9GHz 帯 ITS 確保 (1999)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>標準化</td>
<td>SAE J2735</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>VII</td>
<td>IntelliDriveSM</td>
<td>Connected Vehicle</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>CICAS</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

図 2.1.2-1 米国 C-ITS の全体概要とその傾向

図 2.1.2-1 に米国の C-ITS の全体概要とその傾向を示した。

米国では交通の安全性、効率性、環境性の向上を Transportation Plan 2035 という長期計画の中で捉えており、死傷者を次の 20 年で半減させる計画で C-ITS をそのキー技術であると捉えている。米国の C-ITS 開発においては、USDOT（*1）の RITA（*2）が 2003 年に DSRC インフラを全国展開し、その車載機を全ての新車に装着するという VII（*3）イニシアティブを打ち出したが、次第に DSRC 以外の通信技術も考慮し、早期に実現できる VII アプリを示していくことに重点が置かれるなど戦略が変更され、2009 年に IntelliDriveSM と改称し開発計画を再構築して実用化を早めようとしてきた。

USDOT は 2009 年 10 月に “ITS Strategic Research Plan 2010-2014” を公表し、安全、効率、環境の ITS サービスの実現のための研究開発を進め、NHTSA（*4）が 2013 年に乗用車への車載システムの搭載適用の判断を、2014 年に大型車への搭載適用の判断を、FHWA（*5）が 2015 年に路車間システムの展開の判断をした。NHTSA の乗用車への車載システム搭載適用判断は 2014 年 2 月に提示されたが、それによれば、NHTSA は車載システム搭載規制化の提案に向け検討を開始するとしている。
USDOT は 2015 年から 5 年間の次期 ITS Strategic Research Plan の策定検討を実施しており、「Safe & Connected Vehicle Automation」として図 2.1.2-2 に示すように Connected Vehicles と Automation の統合にフォーカスした計画を立てつつある。

図 2.1.2-2 Automated Vehicle と Connected Vehicle から Connected Automated Vehicle へ
（出典：20th ITS 世界会議 東京）

研究開発において、RITA は 2011 年に IntelliDrive*SM をさらに改称し、乗用車、大型車の車車間システム搭載判断と路側インフラ展開の政策判断をするため、C-ITS のアプリ選定、プロト開発、フィールドテスト、安全 B/C、受容性評価等を行なう Connected Vehicle イニシアティブを打ち出した。かかるイニシアティブにおける最大のプロジェクトが Safety Pilot である。

*1：USDOT；U.S. Department of Transportation（連邦運輸省）
*2：RITA；Research and Innovative Technology Administration（調査・革新技術庁）
*3：VII；Vehicle Infrastructure Integration
*4：NHTSA；National Highway Traffic Safety Administration（連邦高速道路交通安全局）
*5：FHWA；Federal Highway Administration（連邦幹線道路局）

(2) Safety Pilot プロジェクトと実用化への歩み

Connected Vehicle の主要な開発項目として協調安全システムの実環境下での評価や効果の評価、ドライバ受容性の評価を行う Safety Pilot プロジェクトが 2011 年 8 月から 2 年間、予算の 26M$で USDOT の強力なサポートの下で実施された。

プロジェクトは大きく 2 段階のフェーズに分けて実施された。第 1 フェーズとして全米の 6 箇所のテストコースにて表 2.1.2-1 に示す 6 つの協調安全システムのユーザ受容性等を予備的に評価する小規模の FOT Driver Clinic が行われ、第 2 フェーズとしてミシガン州アナーバの公道で約 3000 台に近い車両を用いて大規模な FOT が行われた。
表 2.1.2-1 Safety Pilot Driver Clinics で評価の協調安全アプリ

<table>
<thead>
<tr>
<th>略称</th>
<th>アプリ名称</th>
<th>評価の協調安全アプリ</th>
</tr>
</thead>
<tbody>
<tr>
<td>FCW</td>
<td>Forward Collision Warning</td>
<td>前方衝突警報</td>
</tr>
<tr>
<td>EEBL</td>
<td>Electronic Emergency Brake Light</td>
<td>緊急電子ブレーキ灯</td>
</tr>
<tr>
<td>BSW</td>
<td>Blind Spot Warning</td>
<td>死角警報</td>
</tr>
<tr>
<td>LCW</td>
<td>Lane Change Warning</td>
<td>車線変更警報</td>
</tr>
<tr>
<td>IMA</td>
<td>Intersection Movement Assist</td>
<td>交差点運転支援</td>
</tr>
<tr>
<td>DNPW</td>
<td>Do Not Pass Warning</td>
<td>追い越し時警告</td>
</tr>
</tbody>
</table>

6 つの安全アプリの受容性を問う質問では、アプリにより多少異なるもののいずれのアプリも約 80〜90%のドライバより肯定的評価を得た。

大規模 FOT である Safety Pilot Model Deployment は 2012 年 8 月より 1 年間、ミシガン州 アナーバの公道で、カーメーカーのコンソーシアムである CAMP、サプライヤまたはミシガン州 DOT、市当局等が参加し、車両約 2800 台を用いて V2V/V2I 協調安全アプリの効果検証が行われた。その後、大型車での評価は 12 ヶ月延長されている。

図 2.1.2-3 にテストサイトを示す。テストサイトは路側インフラ 29 箇所（信号交差点 21、カーブ 3、高速道路 5）を設置した 73 レーンマイルの公道であり、路側機は V2I メッセージを送受信し、信号制御装置とのインタフェースを有し、危険道路部位に関するアプリをサポートする。

表 2.1.2-2 に大規模 FOT におけるテスト車両の内訳を示す。テスト車両は乗用車のみでなく商用トラック、バスも使用された。車載機は直納タイプだけでなく、普及加速のため基本タイプや市販タイプも評価された。2800 台の内 2450 台は送信のみが可能な車載機であり、約 400 台が警報可能、約 200 台が詳細ログの取得可能な車載機である。車載機は 5.9GHz 無線を利用し、100msec ごとに BSM (*1) を 300m の範囲に送信する。

大規模 FOT では Driver Clinic で評価した 6 つの V2V 安全アプリと、V2I のアプリとして CSW と RGC が評価された。

- CSW：Curve Speed Warning カーブ進入速度警報
- RGC：Railroad Grade Crossing 鉄道踏み切り横断

表 2.1.2-3 にテスト車両と車載装置の対応アプリの内訳を、図 2.1.2-4 にテスト車両と車載装置、路側装置の例を示した。

図 2.1.2-3 アナーバ大規模 FOT テストサイト
（出典：2013年9月、Connected Vehicle Public Meeting）

表 2.1.2-2 大規模 FOT でのテスト車両（出典：19th ITS World Congress）

<table>
<thead>
<tr>
<th></th>
<th>Integrated Vehicles</th>
<th>Retrofit/Aftermarket Devices</th>
<th>Retrofit/Aftermarket Devices</th>
<th>Vehicle Awareness Devices</th>
</tr>
</thead>
<tbody>
<tr>
<td>Passenger Cars</td>
<td>64</td>
<td>100</td>
<td>200</td>
<td>2215</td>
</tr>
<tr>
<td>Heavy Trucks</td>
<td>3</td>
<td>8</td>
<td>8</td>
<td>50</td>
</tr>
<tr>
<td>Transit</td>
<td></td>
<td>3</td>
<td></td>
<td>85</td>
</tr>
<tr>
<td>Medium Duty</td>
<td></td>
<td></td>
<td></td>
<td>100</td>
</tr>
<tr>
<td></td>
<td>67</td>
<td>111</td>
<td>208</td>
<td>2450</td>
</tr>
</tbody>
</table>

Data Acquisition System (Video, CAN, Warnings, Messages)

Basic Messages Only：BSM の送信のみでドライバインタフェースなし

All Messages and Warnings：BSM を送受信し安全警報のドライバインタフェースを持つ。アプリとして赤信号警報、カーブ進入速度警報、EEBL、前方衝突警
表 2.1.2-3 テスト車両と車載装置の対応アプリの内訳
（出典：2013 年 9 月，Connected Vehicle Public Meeting）

<table>
<thead>
<tr>
<th>Model Deployment</th>
<th>EEBL</th>
<th>FCW</th>
<th>IMA</th>
<th>LTA</th>
<th>BSW/ LCW</th>
<th>DNPW</th>
<th>CSW</th>
</tr>
</thead>
<tbody>
<tr>
<td>OEMs</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ford</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td></td>
<td>X</td>
<td></td>
<td></td>
</tr>
<tr>
<td>GM</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td></td>
<td>X</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Honda</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td></td>
<td>X</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Mercedes</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td></td>
<td>X</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Toyota</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Hyundai Kia</td>
<td>X</td>
<td></td>
<td></td>
<td></td>
<td>X</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Nissan</td>
<td>X</td>
<td>X</td>
<td></td>
<td></td>
<td>X</td>
<td></td>
<td></td>
</tr>
<tr>
<td>VW-Audi</td>
<td>X</td>
<td>X</td>
<td></td>
<td></td>
<td>X</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Aftermarket Devices</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Cohda-Delphi</td>
<td>X</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Cohda-Visteon</td>
<td>X</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Denso</td>
<td>X</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Heavy Truck</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Battelle Integrated</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td></td>
<td>X</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Battelle RSD</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td></td>
<td>X</td>
<td></td>
<td></td>
</tr>
<tr>
<td>SWR RSD</td>
<td>X</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Transit</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>UM Buses</td>
<td>X</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Total</td>
<td>15</td>
<td>13</td>
<td>14</td>
<td>8</td>
<td>1</td>
<td>9</td>
<td>3</td>
</tr>
</tbody>
</table>

LTA: Left Turn Assist 左折支援

テスト車両と車載装置の例（出典：2013 年 9 月，Connected Vehicle Public Meeting）
大規模 FOT における詳細ログ取得可能な車載機を搭載した車両（図 2.1.2-4 の黄色）では、図 2.1.2-7 のごとく車両内外をビデオ撮影するとともに車両の位置 (GPS) や動作状態、通信データ (位置、警報等) を計測しつつアプリの評価が実施された。

大規模 FOT では BSM を一日に 50M、計約 11B 収集し、プロジェクト終了までに約 200TB のデータが収集された。このデータは VOLPE (*2) に集められて分析されており、NHTSA の乗用車適用判断文書提示後、約数週間でパブリックコメントのための V2V 通信技術における研究レポートとして発表される予定である。また、Safety Pilot の成果は 2014 年 4 月にアナーバで開催される Connected Vehicles and Infrastructure シンポジウムで披露されると考えられる。

図 2.1.2-7 Safety Pilot におけるテストデータ収集システム
（出典：2013 年 9 月、Connected Vehicle Public Meeting）

SafetyPilotの成果をベースに、コアシステムアーキテクチャと相互運用可能な装置を用いた実用化可能性のある地域の増加、安全への DSRC 使用と車載注意喚起デバイスの使用の加速、効率や環境アプリのための無線通信や民間投資の相入れを狙った Regional Pilot の計画がある。これらは、図2.1.2-8に示すように全米 6箇所に設置されるテストベッドをベースに展開される可能性が高い。この内、ミシガンテストベッド Southeast Michigan Connected Vehicle Test Bed は 2014 年春から稼動し夏にはフル稼働するとのことである。

—35—
図 2.1.2-8 C-ITS のテストベッド
（出典：2014 年 1 月, Transportation Research Board 93rd Annual Meeting）

*1：BSM：Basic Safety Message；”Here I am” メッセージで基本的に車両寸法、位置、速度、方向、加減速度、ブレーキ状態等を記述
*2：VOLPE；The Volpe National Transportation Systems Cente
2.1.3 日本における C-ITS の経緯と最新の状況

(1) 日本における C-ITS 施策の経緯

首相官邸の IT 戦略本部は 2010 年 5 月に「新たな情報通信技術戦略」を出し、その中で「ITS による人やモノの移動のグリーン化（グリーン ITS）」及び「情報通信技術を活用した安全運転支援システムの導入・整備の推進」を掲げ、各関連省庁と有識者からなる TF を設置して上記に関するロードマップ策定に向けた調査と提言を実施した。これに基づき、2011 年 8 月に上記「グリーン ITS」と「安全運転支援システム」に関するロードマップが提示された。図 2.1.3-1、図 2.1.3-2 にそのロードマップを示す。

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>広範な道路交通交通情報の集約配信</td>
<td>国際接続化と海外展開を促進</td>
<td>利用目的に応じて必要とされるプローブ情報の精度・内容等の検証、効果の検証</td>
<td>運用体制の検討</td>
<td>本格普及</td>
<td>最適経路案内等、グリーン ITS サービスの普及</td>
</tr>
<tr>
<td>運用体制の検討</td>
<td>情報共有の制度等</td>
<td>最適経路案内等、グリーン ITS サービスの普及</td>
<td>交通渋滞半減（2010年度）</td>
<td></td>
<td></td>
</tr>
<tr>
<td>運用体制の検討</td>
<td>車両の情報化、システムの海外展開をもとにしたロードマップの策定</td>
<td>最適経路案内等、グリーン ITS サービスの普及</td>
<td>交通流に応じた道路交通管理の最適化</td>
<td></td>
<td></td>
</tr>
<tr>
<td>運用体制の検討</td>
<td>プローブ情報の集約・活用の効果検証</td>
<td>運用体制の検討</td>
<td>交通渋滞半減（2010年度）</td>
<td></td>
<td></td>
</tr>
<tr>
<td>運用体制の検討</td>
<td>プローブ情報の集約・活用の効果検証</td>
<td>プローブ情報の集約・活用の効果検証</td>
<td>交通渋滞半減（2010年度）</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

図 2.1.3-1 「グリーン ITS」ロードマップ
(出典：ITS 戦略本部_平成 23 年 8 月，ITS に関するロードマップ)

「グリーン ITS」ロードマップにおいては、主にプローブ情報を用いて広範な道路交通情報の収集・配信と交通管制の高度化を行い、最適経路案内等のグリーン ITS サービスの普及や道路交通管理の最適化により 2020 年度に交通渋滞の半減を目指すとしている。

「安全運転支援」ロードマップにおいては、2013 年度の第 20 回 ITS 世界会議東京において路車・車車連携型システムのデモを行い、2014 年度以降実用化と全国展開をはかるとともに、歩車間通信型システムの開発を進めることで 2020 年度に交通事故死者 2500 人以下を目指すとしている。
また、内閣は2013年6月に、「日本再興戦略(JAPAN is BACK)」、「世界最先端IT国家創造宣言」を閣議決定している。

日本再興戦略では3つのアクションプランをあげ、その内の戦略市場創造プランのテーマとして「安全・便利で経済的な次世代インフラの構築」をあげ、車車間通信、路車間通信等を用いた安全運転支援装置・安全運転支援システム及び自動走行システム、渋滞予測システム、物流システムの構築により「ヒトやモノが安全・快適に移動することのできる社会」の2030年実現を国家プロジェクトとして進めるとしている。このために、2013年度より車車間通信・路車間通信等を用いた安全運転支援システム・自動運転の公道実証実験を実施し、2016年度以降に社会実装して、2020年には安全運転支援装置・システムが国内車両の20%に搭載され、世界市場の3割を獲得することを目標としている。

また、「世界最先端IT国家創造宣言」は「健康で安心して快適に生活できる、世界で安全で災害に強い社会」を目指し、車・道路・人のタイムリーな情報交換、地図情報や車・人の位置情報等の地理空間情報、ビッグデータ活用など、ITS技術の活用により「世界中でも安全で環境にやさしく経済的な道路交通社会」を実現するとし、府省横断ロードマップを策定し推進体制を構築して、高度運転支援技術・自動走行システムの開発・実用化等を推進するとしている。これにより、ITS技術は2013年に東京で開催されるITS世界会議等において国内外に発信し、2014年度から、社会実装を前提としたモデル地区での先導的な実証事業を公道上で実施するとともに、高度運転支援技術等の開発にも着手し、2020年度中には、自動走行システムの試用を開始するとした。これら取組みで2018年を目途に交通事故死者
数を2,500人以下とし、2020年までには、世界で最も安全な道路交通社会を実現するとともに、交通渋滞を大幅に削減するとしている。

(2) 第20回ITS世界会議東京におけるショーケース

2013年度のITS世界会議東京においてはC-ITSのショーケースと公道での数ヶ月の実証実験が実施され、既に実用化されたITSスポットサービスやDSSSサービス等の周知をはかるとともに、2015年度に実用化を目指す最新のC-ITSの効果検証をおこない、日本のC-ITSを世界にアピールした。

図2.1.3-1にITS世界会議東京において実施されたC-ITSの5つのITSGreenSafetyShowcaseを示す。
2.2 C-ITS の標準化に関する状況まとめ

欧州では OEM、インフラ側の双方での 2015 年 C-ITS 実用化合意のもとで各国で C-ITS コリドー計画が立ち上がり、これに対する標準も 2013 年 7 月に Release1 として提示され、C-ITS の 2015 年実用化の準備が着々と進みつつある。ただし、Release1 標準とその欧米協調はまだすべてが完了したとはいえず、主に CEN 側の標準化の遅れで 2014 年にずれ込む見通しである。また、2012 年に米国で生じた 5.9GHz 帯の DSRC と WiFi 共用化の問題は欧州にも飛び火して、現状欧米で DSRC と WiFi との共用検討がなされており、これも 2014 年には最終決定がなされる予定である。

本報告では、欧州の C-ITS の実用化に大きな影響を与える、Release1 を中心とした C-ITS の標準化やその欧米協調と、5.9GHz WiFi 共用化の最新動向につき ITS 世界会議東京や欧州の C2C-CC Forum、ETSI の TC-ITS Workshop 等への参加や各標準機関の WEB 情報等より調査した結果を示す。

2.2.1 欧州の M/453 最終報告概要と C-ITS 標準化の現状

C-ITS においては、相互運用性や互換性、信用の確保、市場拡大等のために標準化が必要かつ重要であり、標準化を成功させるためには政策の優先が必要との観点より、産業・企業総局（DG_ENTR）は 2009 年 10 月に EC 指令 M/453 を出し、欧州の 3 つの標準化組織 CEN、ETSI、CENELEC（*1）に対し、2012 年 7 月までに C-ITS に対する必要な標準化活動の分析を実施し、標準の評価試験法の作成や C-ITS に対する標準・技術規格を作成し、最低限の欧州標準（EN）（Release1）を示すように求めた。

M/453 に対応して、早くから ITS 技術委員会（TC-ITS）で C-ITS の標準化に取り組んでいた ESTI と、要請を受けて TC278 内に C-ITS 標準化に関わる WG16 を設置して標準化推進体制を強化してきた CEN が 2010 年 1 月に共同で受諾し 4 月に M453 に対する Response を提出し、C-ITS の標準化を進めてきた。

CEN/ETSI は M/453 の提出期限に 3 ヶ月遅れて 2011 年 4 月に第 1 回の中間報告 1st Progress Report を、2012 年 2 月に同様に 3 ヶ月遅れて第 2 回の中間報告 2nd Progress Report を発行し、最終報告書である Release1 は結局期限より 1 年遅れの 2013 年 7 月に発行された。

Release1 は M/453 期間の標準化活動についての詳細情報と Response で記載の規格成立のための計画を示す 2013 年 6 月現在の規格の状況報告となっているが、相変わらず ETSI、CEN は別々に規格のリストを提示しており、ETSI がやはり規格化をリードしている。

表 2.2.1-1 に Release1 に記載の ETSI および CEN における C-ITS 規格数と発行件数を、図 2.2.1-1 に ITS ステーション（以下 ITS-S）の各レイヤ每の主要規格を示す。規格には EN のみでなく TS や TR も含まれており、また CEN 側の規格には CEN/WG16（ISO/WG18）ができる以前に成立した ISO 規格も含まれている。表に示すように Release1 規格のうち ETSI は約 8 割を完成しているが、CEN では既に標準化している C-ITS 関連の ISO 規格を入れてもまだ約 5 割の完成度であり、Release1 の全規格の完成は ETSI では 2013 年終わり～2014 年始め、CEN では 2014 年中になりそうである。
標準化の主要な残業課題としては、ETSI では通信の幅拡制御規格、CEN では道路事業者のユースケースに対応するメッセージ（例えば、SPaT/MAP、IVI、PDM/PVD（*2）等）の規格等があげられる。

表 2.2.1-1 Release1 に記載の ETSI/CEN の C-ITS 規格数と発行件数

注: 標準化項目分類は ITS ステーションの各レイヤに対応し同色で示した。

<table>
<thead>
<tr>
<th>標準化項目分類</th>
<th>ETSI 作業件数</th>
<th>発行件数</th>
<th>CEN/ISO 作業件数</th>
<th>発行件数</th>
<th>ETSI+CEN/ISO 作業件数</th>
</tr>
</thead>
<tbody>
<tr>
<td>General standards</td>
<td>3</td>
<td>2</td>
<td>6</td>
<td>0</td>
<td>9</td>
</tr>
<tr>
<td>Standards - Testing</td>
<td>37</td>
<td>32</td>
<td>2</td>
<td>2</td>
<td>39</td>
</tr>
<tr>
<td>Standards - Applications</td>
<td>7</td>
<td>2</td>
<td>14</td>
<td>22</td>
<td>54</td>
</tr>
<tr>
<td>Standards - Facilities</td>
<td>10</td>
<td>5</td>
<td>14</td>
<td>22</td>
<td>54</td>
</tr>
<tr>
<td>Standards - Network and Transport</td>
<td>14</td>
<td>6</td>
<td>14</td>
<td>22</td>
<td>54</td>
</tr>
<tr>
<td>Standards - Access network & media</td>
<td>9</td>
<td>9</td>
<td>16</td>
<td>19</td>
<td>37</td>
</tr>
<tr>
<td>Standards - Management</td>
<td>12</td>
<td>7</td>
<td>19</td>
<td>19</td>
<td>37</td>
</tr>
<tr>
<td>Standards - Security</td>
<td>11</td>
<td>8</td>
<td>19</td>
<td>19</td>
<td>37</td>
</tr>
<tr>
<td>計</td>
<td>103</td>
<td>71</td>
<td>91</td>
<td>41</td>
<td>194</td>
</tr>
</tbody>
</table>

図 2.2.1-1 ITS ステーションの各レイヤ毎の主要規格（出典: ITS 世界会議東京）
2014年には SAE、IEEE等他の標準化機関からの関連規格を含む Release1規格共同文書を発行予定とのことであり、また標準化の調整を行うECの関係3総局およびETSI/TC-ITS、CEN/TC278議長で構成のITSコーディネートグループ(ITS-CG)をM/453終了後も継続予定とのことである。

Day1アプリのための標準規格Release1に続き、ETSIは既にDay1アプリの次の展開に対応するRelease2規格の検討活動を開始している。Release2はDay1よりさらに複雑なユースケースをサポートするとともに、市場導入から統合サービスに至る過程や他のドメインとの相互作用も考慮しており自動運転も含んでいる。かかるRelease2活動にもECの補助がつく可能性が大きいと考えられる。

標準化の主要な目的の一つである相互運用性の確保のためには、仕様化→評価→試験といった実用的アプローチが重要であり、ETSIは異なるメーカーのITS-S間の相互接続性試験を行うPlugtestを主催してきた。

Plugtestは第1回が14のメーカーが参加し2011年11月にオランダのHelmondで、第2回が2012年6月にフランスのベルサイユで行われ、第3回が2013年11月にドイツのEssenで行われた。第3回では17社が参加し、ETSI Release1に規定のGeoNetworkingとIEEE1609.2ベースのセキュリティ、CEN規定のメッセージSPaT/MAPに焦点るとともに、規格の残課題でもあるDCCに関するテストも行われた。 (*3)

表2.2.1-2に2014年2月時点でのETSIのC-ITSに関する最新の標準化状況を示した。表においてRelease1対応は右欄に○で示している。表中、既に公表されている標準を黄色塗りつぶしで、承認段階のものを薄黄色塗りつぶしで示した。

今年度退任のEC DG CONNECTのヤスカライネ氏は、昨年度と同様、C2C-CC ForumやETSI TC-ITS WorkshopにおいてC-ITSにおける標準化の必要性と重要性を述べ、標準化の成功のために、政策の優先、全関係者のアクティブな活動、各規格化機関の協力と国際協調とともに確実な資金提資が必要であることを示した。
表 2.2.1-2 2014年2月現在でのETSIのC-ITS標準化状況

<table>
<thead>
<tr>
<th>Standardization Item</th>
<th>Standard Title</th>
<th>Standard number</th>
<th>Target Date</th>
<th>Released</th>
</tr>
</thead>
<tbody>
<tr>
<td>General</td>
<td>Communication Architecture</td>
<td>TS 102665-1</td>
<td>Published</td>
<td>○</td>
</tr>
<tr>
<td></td>
<td>Framework for Public Mobile Networks in Cooperative ITS (C-ITS)</td>
<td>TS 102665-2</td>
<td>Published</td>
<td>○</td>
</tr>
<tr>
<td></td>
<td>Security, Security Services and Architecture</td>
<td>TS 102731-1</td>
<td>Published</td>
<td>○</td>
</tr>
<tr>
<td></td>
<td>Users and application requirements</td>
<td>TS 102894-1</td>
<td>Published</td>
<td>○</td>
</tr>
<tr>
<td></td>
<td>Applications and facilities layer common data dictionary</td>
<td>TS 102894-2</td>
<td>Published</td>
<td>○</td>
</tr>
<tr>
<td></td>
<td>GeoNetworking</td>
<td>TS 102636-3</td>
<td>Published</td>
<td>○</td>
</tr>
<tr>
<td></td>
<td>V2X Application</td>
<td>TS 103086-3</td>
<td>Map-14</td>
<td>○</td>
</tr>
<tr>
<td></td>
<td>Testing: Frame for conformance and interoperability testing</td>
<td>TS 102636-4</td>
<td>Published</td>
<td>○</td>
</tr>
<tr>
<td></td>
<td>Vehicular Communications: GeoMessaging Enabler</td>
<td>TS 102636-5</td>
<td>Published</td>
<td>○</td>
</tr>
<tr>
<td>Facilities</td>
<td>Basic Set of Applications: Definitions</td>
<td>TS 102636-6</td>
<td>Published</td>
<td>○</td>
</tr>
<tr>
<td></td>
<td>Basic Set of Applications: Definitions—Revision</td>
<td>TS 102636-7</td>
<td>Published</td>
<td>○</td>
</tr>
<tr>
<td></td>
<td>C-ITS Demonstration 2006 Use Cases and Technical Specifications</td>
<td>TS 102636-8</td>
<td>Published</td>
<td>○</td>
</tr>
<tr>
<td></td>
<td>Basic Set of Applications: Part 1—Multi Transport Service</td>
<td>TS 102636-9</td>
<td>Published</td>
<td>○</td>
</tr>
<tr>
<td></td>
<td>V2X Communication: Multimedia content dissemination basic service specification</td>
<td>TS 102636-10</td>
<td>Published</td>
<td>○</td>
</tr>
<tr>
<td>Testing</td>
<td>CAM</td>
<td>TS 102636-11</td>
<td>Published</td>
<td>○</td>
</tr>
<tr>
<td></td>
<td>Part 1: Test requirements and Protocol Implementation Conformance Statement (PICS) proforma</td>
<td>TS 102636-12</td>
<td>Published</td>
<td>○</td>
</tr>
<tr>
<td></td>
<td>Part 2: Test Suite Structure and Test Purposes (TSS&TP)</td>
<td>TS 102636-13</td>
<td>Published</td>
<td>○</td>
</tr>
<tr>
<td></td>
<td>Part 3: Abstract Test Suite (ATS) and Protocol Implementation eXtra Information for Testing (PIXIT)</td>
<td>TS 102636-14</td>
<td>Published</td>
<td>○</td>
</tr>
<tr>
<td></td>
<td>DENM</td>
<td>TS 102636-15</td>
<td>Published</td>
<td>○</td>
</tr>
<tr>
<td></td>
<td>Part 1: Test requirements and Protocol Implementation Conformance Statement (PICS)</td>
<td>TS 102636-16</td>
<td>Published</td>
<td>○</td>
</tr>
<tr>
<td></td>
<td>Part 2: Test Suite Structure and Test Purposes (TSS & TP)</td>
<td>TS 102636-17</td>
<td>Published</td>
<td>○</td>
</tr>
<tr>
<td></td>
<td>Part 3: Abstract Test Suite (ATS) and Protocol Implementation eXtra Information for Testing (PIXIT)</td>
<td>TS 102636-18</td>
<td>Published</td>
<td>○</td>
</tr>
<tr>
<td></td>
<td>Testing</td>
<td>TS 102636-19</td>
<td>Published</td>
<td>○</td>
</tr>
<tr>
<td></td>
<td>Part 1: CAM: CAM validation report</td>
<td>TS 102636-20</td>
<td>Published</td>
<td>○</td>
</tr>
<tr>
<td></td>
<td>Part 2: DENM: DENM validation report</td>
<td>TS 102636-21</td>
<td>Published</td>
<td>○</td>
</tr>
<tr>
<td></td>
<td>Conformance test specification for Road Hazard Signaling application;</td>
<td>TS 102636-22</td>
<td>Published</td>
<td>○</td>
</tr>
<tr>
<td></td>
<td>Part 1: Protocol Implementation Conformance Statement (PICS)</td>
<td>TS 102636-23</td>
<td>Published</td>
<td>○</td>
</tr>
<tr>
<td></td>
<td>Part 2: Test Suite Structure and Test Purposes (TSS & TIP)</td>
<td>TS 102636-24</td>
<td>Published</td>
<td>○</td>
</tr>
<tr>
<td></td>
<td>Part 3: Abstract Test Suite (ATS) and Protocol Implementation eXtra Information for Testing (PIXIT)</td>
<td>TS 102636-25</td>
<td>Published</td>
<td>○</td>
</tr>
<tr>
<td></td>
<td>Testing</td>
<td>TS 102636-26</td>
<td>Published</td>
<td>○</td>
</tr>
<tr>
<td></td>
<td>Part 1: Implementation Conformance Statement (ICS)</td>
<td>TS 102636-27</td>
<td>Published</td>
<td>○</td>
</tr>
<tr>
<td></td>
<td>Part 2: Test Suite Structure and Test Purposes (TSS & TIP)</td>
<td>TS 102636-28</td>
<td>Published</td>
<td>○</td>
</tr>
<tr>
<td></td>
<td>Part 3: Abstract Test Suite (ATS) and Implementation eXtra Information for Testing (WHI)</td>
<td>TS 102636-29</td>
<td>Published</td>
<td>○</td>
</tr>
<tr>
<td>Network and Transport</td>
<td>GeoNetworking</td>
<td>TS 102636-30</td>
<td>Published</td>
<td>○</td>
</tr>
<tr>
<td></td>
<td>Part 1: Requirements</td>
<td>TS 102636-31</td>
<td>Published</td>
<td>○</td>
</tr>
<tr>
<td></td>
<td>Part 1: Requirements—revised TS</td>
<td>TS 102636-32</td>
<td>Published</td>
<td>○</td>
</tr>
<tr>
<td></td>
<td>Part 1: Requirements—revised TS</td>
<td>TS 102636-33</td>
<td>Published</td>
<td>○</td>
</tr>
<tr>
<td></td>
<td>Part 2: Scenarios</td>
<td>TS 102636-34</td>
<td>Published</td>
<td>○</td>
</tr>
<tr>
<td></td>
<td>Part 4:1: Media independent functionalities</td>
<td>TS 102636-35</td>
<td>Published</td>
<td>○</td>
</tr>
<tr>
<td></td>
<td>Part 4:2: Media dependent functionalities for ITS-G5</td>
<td>TS 102636-36</td>
<td>Published</td>
<td>○</td>
</tr>
<tr>
<td></td>
<td>Part 5:1: Basic Transport Protocol</td>
<td>TS 102634-1</td>
<td>Published</td>
<td>○</td>
</tr>
<tr>
<td></td>
<td>Part 5:2: Basic Transport Protocol—revised TS</td>
<td>TS 102634-2</td>
<td>Published</td>
<td>○</td>
</tr>
<tr>
<td></td>
<td>Part 6: Transmission of IPv6 Packets over GeoNetworking Protocols—revised TS</td>
<td>TS 102634-3</td>
<td>Published</td>
<td>○</td>
</tr>
<tr>
<td></td>
<td>Part 7: Interface between networking & transport layer and facilities layer</td>
<td>TS 102634-4</td>
<td>Published</td>
<td>○</td>
</tr>
<tr>
<td>Basic Transport Protocol</td>
<td>TS 102634-5</td>
<td>Published</td>
<td>○</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Part 1: Test requirements and Protocol Implementation Conformance Statement (PICS)</td>
<td>TS 102634-6</td>
<td>Published</td>
<td>○</td>
</tr>
<tr>
<td></td>
<td>Part 2: Test Suite Structure and Test Purposes (TSS & TIP)</td>
<td>TS 102634-7</td>
<td>Published</td>
<td>○</td>
</tr>
<tr>
<td></td>
<td>Part 3: Abstract Test Suite (ATS) and Protocol Implementation eXtra Information for Testing (PIXIT)</td>
<td>TS 102634-8</td>
<td>Published</td>
<td>○</td>
</tr>
<tr>
<td>GeoNetworking</td>
<td>TS 102634-9</td>
<td>Published</td>
<td>○</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Part 1: Test requirements and Protocol Implementation Conformance Statement (PICS)</td>
<td>TS 102634-10</td>
<td>Published</td>
<td>○</td>
</tr>
<tr>
<td></td>
<td>Part 2: Test Suite Structure and Test Purposes (TSS & TIP)</td>
<td>TS 102634-11</td>
<td>Published</td>
<td>○</td>
</tr>
<tr>
<td></td>
<td>Part 3: Abstract Test Suite (ATS) and Protocol Implementation eXtra Information for Testing (PIXIT)</td>
<td>TS 102634-12</td>
<td>Published</td>
<td>○</td>
</tr>
<tr>
<td></td>
<td>Testing</td>
<td>TS 102634-13</td>
<td>Published</td>
<td>○</td>
</tr>
<tr>
<td></td>
<td>Part 3: Conformance test specification for Geographical addressing and forwarding for point-to-point and point-to-multipoint communications, GeoNetworking validation report</td>
<td>TS 102634-14</td>
<td>Published</td>
<td>○</td>
</tr>
<tr>
<td>GeoNetworking IFS OS</td>
<td>TS 102634-15</td>
<td>Published</td>
<td>○</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Part 1: Test requirements and Protocol Implementation Conformance Statement (PICS)</td>
<td>TS 102634-16</td>
<td>Published</td>
<td>○</td>
</tr>
<tr>
<td></td>
<td>Part 2: Test Suite Structure and Test Purposes (TSS & TIP)</td>
<td>TS 102634-17</td>
<td>Published</td>
<td>○</td>
</tr>
<tr>
<td></td>
<td>Part 3: Abstract Test Suite (ATS) and Protocol Implementation eXtra Information for Testing (PIXIT)</td>
<td>TS 102634-18</td>
<td>Published</td>
<td>○</td>
</tr>
<tr>
<td></td>
<td>Testing</td>
<td>TS 102634-19</td>
<td>Published</td>
<td>○</td>
</tr>
<tr>
<td></td>
<td>Part 3: Conformance test specification for Geographical addressing and forwarding for point-to-point and point-to-multipoint communications, GeoNetworking validation report</td>
<td>TS 102634-20</td>
<td>Published</td>
<td>○</td>
</tr>
<tr>
<td>GeoNetworking BTP validation report</td>
<td>TS 102634-21</td>
<td>Published</td>
<td>○</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Part 5: IPv6 over GeoNetworking validation report</td>
<td>TS 102634-22</td>
<td>Published</td>
<td>○</td>
</tr>
<tr>
<td>Vehicular Communications: Geographical Area Definition</td>
<td>TS 102634-23</td>
<td>Published</td>
<td>○</td>
<td></td>
</tr>
<tr>
<td>Network & Transport Layer: Analysis of IPv6 for networking</td>
<td>TS 102634-24</td>
<td>Published</td>
<td>○</td>
<td></td>
</tr>
<tr>
<td>Standardization Item</td>
<td>Standard Life</td>
<td>Standard number</td>
<td>Target Date</td>
<td>Released</td>
</tr>
<tr>
<td>-----------------------</td>
<td>---------------</td>
<td>-----------------</td>
<td>-------------</td>
<td>----------</td>
</tr>
<tr>
<td>Access and Media</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>European profile standard for the physical and medium access control layer of Intelligent Transport Systems operating in the 5 GHz frequency band</td>
<td>ES 200653</td>
<td>Published</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Access layer specification for Intelligent Transport Systems operating in the 5 GHz frequency band</td>
<td>ES 200563</td>
<td>Published</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Harmonized standards for Intelligent Transport Systems operating in the 5 GHz and 6 GHz range; Access layer part</td>
<td>ES 200624</td>
<td>Published</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Mitigation techniques to avoid interference between European CEN Dedicated Short Range Communication (CEN DSRC) equipment and Intelligent Transport Systems (ITS) operating in the 5 GHz frequency range</td>
<td>ES 102792</td>
<td>Published</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Harmonized Channel specifications for Intelligent Transport systems operating in the 8 GHz frequency band</td>
<td>ES 102724</td>
<td>Published</td>
<td></td>
<td></td>
</tr>
<tr>
<td>STDMA recommended parameters and settings for cooperative ITS; Access Layer Part</td>
<td>ES 102861</td>
<td>Published</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Road Transport and Traffic Technologies (RPTT); Dedicated Short Range Communications (DSRC)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>- Part 1: Technical characteristics and test methods for High Data Rate (HDR) data transmission equipment operating in the 5.85 GHz Industrial, Scientific and Medical (ISM) band</td>
<td>ES 200674</td>
<td>Published</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Testing</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Test specifications for the channel congestion control algorithm operating in the 5.8 GHz range;</td>
<td>TS 103171</td>
<td>Published</td>
<td></td>
<td></td>
</tr>
<tr>
<td>- Part 1: Protocol Implementation Conformance Statement (PICS)</td>
<td>TS 103171-1</td>
<td>Published</td>
<td></td>
<td></td>
</tr>
<tr>
<td>- Part 2: Protocol Implementation Conformance Statement (PICS)</td>
<td>TS 103171-2</td>
<td>Published</td>
<td></td>
<td></td>
</tr>
<tr>
<td>- Part 3: Abstract Test Suite (ATS) and partial Protocol Implementation extra Information for Testing (PIT)</td>
<td>TS 103171-3</td>
<td>Published</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Test specifications for the methods to ensure coexistence of cooperative ITS with other ITU-T DSRC</td>
<td>TS 103172</td>
<td>Published</td>
<td></td>
<td></td>
</tr>
<tr>
<td>- Part 1: Protocol Implementation Conformance Statement (PICS)</td>
<td>TS 103161</td>
<td>Published</td>
<td></td>
<td></td>
</tr>
<tr>
<td>- Part 2: Test Suite Structure and Test Purposes (TSS &TP)</td>
<td>TS 103161-1</td>
<td>Published</td>
<td></td>
<td></td>
</tr>
<tr>
<td>- Part 3: Abstract Test Suite (ATS) and partial Protocol Implementation extra Information for Testing (PIT)</td>
<td>TS 103161-2</td>
<td>Published</td>
<td></td>
<td></td>
</tr>
<tr>
<td>5.8 GHz-SM Campal:</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>- Part 1: Application Layer Common Application Service Elements;</td>
<td>TS 103087</td>
<td>Published</td>
<td></td>
<td></td>
</tr>
<tr>
<td>- Sub-Part 1: Protocol Implementation Conformance Statement (PICS) proforma specification</td>
<td>TS 103101</td>
<td>Published</td>
<td></td>
<td></td>
</tr>
<tr>
<td>- Sub-Part 2: Test Suite Structure and Test Purposes (TSS &TP)</td>
<td>TS 103101-2</td>
<td>Published</td>
<td></td>
<td></td>
</tr>
<tr>
<td>- Sub-Part 3: Abstract Test Suite (ATS) and partial PIF output</td>
<td>TS 103101-2-3</td>
<td>Published</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Mitigation techniques to avoid interference between European CEN Dedicated Short Range Communication (CEN DSRC) equipment and Intelligent Transport Systems (ITS) operating in the 5 GHz frequency range; Evaluation of mitigation methods and techniques</td>
<td>ES 200675</td>
<td>Published</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Performance Evaluation of Self-Organizing ITS MAC as Medium Access Control Method Applied to ITS Access Layer Part</td>
<td>ES 200685</td>
<td>Published</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Management</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ITS station internal management</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>- Sub-Part 1: Implementation method; in MSS</td>
<td>TS 102707</td>
<td>Published</td>
<td></td>
<td></td>
</tr>
<tr>
<td>- Part 1: Architecture and addressing schemes</td>
<td>TS 102725</td>
<td>Published</td>
<td></td>
<td></td>
</tr>
<tr>
<td>- Part 2: Management information base</td>
<td>TS 102725-2</td>
<td>Published</td>
<td></td>
<td></td>
</tr>
<tr>
<td>- Part 3: Interface between management entity and access layer (Main – Access)</td>
<td>TS 102725-3</td>
<td>Published</td>
<td></td>
<td></td>
</tr>
<tr>
<td>- Part 4: Interface between management entity and networking & transport layer</td>
<td>TS 102754-1</td>
<td>Published</td>
<td></td>
<td></td>
</tr>
<tr>
<td>- Part 5: Interface between management entity and facilities layer</td>
<td>TS 102755-1</td>
<td>Published</td>
<td></td>
<td></td>
</tr>
<tr>
<td>OSI-layer topics;</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>- Part 1: Interface between access layer and networking & transport layer</td>
<td>TS 102725-10</td>
<td>Published</td>
<td></td>
<td></td>
</tr>
<tr>
<td>OSI-layer topics;</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>- Part 1: Architecture and addressing schemes</td>
<td>TS 102709</td>
<td>Published</td>
<td></td>
<td></td>
</tr>
<tr>
<td>- Part 2: Information structure and management</td>
<td>TS 102729</td>
<td>Published</td>
<td></td>
<td></td>
</tr>
<tr>
<td>- Part 3: Management information base</td>
<td>TS 102729-2</td>
<td>Published</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Security</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Security: Threat, Vulnerability and Risk Analysis (TVRA)</td>
<td>TS 102862</td>
<td>Published</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Security: Threatler 7 Mapping for ETSI</td>
<td>TS 102867</td>
<td>Published</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Security: Identity Management and Identity Protection in IT</td>
<td>TS 102910</td>
<td>Published</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Security: Security services</td>
<td>TS 102943</td>
<td>Published</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Security: Access Control</td>
<td>TS 102945</td>
<td>Published</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Security: IT communications security architecture and security management</td>
<td>TS 102940</td>
<td>Published</td>
<td></td>
<td></td>
</tr>
<tr>
<td>OSI-layer topics;</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>- Part 7: Interface between security entity and access layer</td>
<td>TS 102723-7</td>
<td>Published</td>
<td></td>
<td></td>
</tr>
<tr>
<td>- Part 8: Interface between security entity and networking & transport layer</td>
<td>TS 102723-8</td>
<td>Published</td>
<td></td>
<td></td>
</tr>
<tr>
<td>- Part 9: Interface between security entity and facilities layer</td>
<td>TS 102723-9</td>
<td>Published</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Security: Trust and Privacy Management</td>
<td>TS 102841</td>
<td>Published</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Security: Security token and certificate</td>
<td>TS 102851</td>
<td>Published</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Testing</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Testing; Conformance test specification for ITS 102 581 and ITS 102 554:</td>
<td>TS 102966-1</td>
<td>Published</td>
<td></td>
<td></td>
</tr>
<tr>
<td>- Part 1: Protocol Implementation Conformance Statement (PICS)</td>
<td>TS 102966-1</td>
<td>Published</td>
<td></td>
<td></td>
</tr>
<tr>
<td>- Part 2: Test Suite Structure and Test Purposes (TSS &TP)</td>
<td>TS 102966-2</td>
<td>Published</td>
<td></td>
<td></td>
</tr>
<tr>
<td>- Part 3: Abstract Test Suite (ATS) and Protocol Implementation extra Information for Testing (PIT)</td>
<td>TS 102966-3</td>
<td>Published</td>
<td></td>
<td></td>
</tr>
<tr>
<td>- Part 4: Validation report</td>
<td>TS 102966-4</td>
<td>Published</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Test specifications for ISO standards</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>CALM – Basic service access point</td>
<td>TS 102760-1</td>
<td>Published</td>
<td></td>
<td></td>
</tr>
<tr>
<td>- Part 1: Implementation Conformance Statement (ICS) proforma</td>
<td>TS 102760-1</td>
<td>Published</td>
<td></td>
<td></td>
</tr>
<tr>
<td>- Part 2: Test Suite Structure and Test Purposes (TSS &TP)</td>
<td>TS 102760-2</td>
<td>Published</td>
<td></td>
<td></td>
</tr>
<tr>
<td>- Part 3: Abstract Test Suite (ATS) and partial PIF output</td>
<td>TS 102760-3</td>
<td>Published</td>
<td></td>
<td></td>
</tr>
<tr>
<td>CALM – Architecture</td>
<td>TS 102844</td>
<td>Published</td>
<td></td>
<td></td>
</tr>
<tr>
<td>- Part 1: Implementation Conformance Statement (ICS) proforma</td>
<td>TS 102844-1</td>
<td>Published</td>
<td></td>
<td></td>
</tr>
<tr>
<td>- Part 2: Test Suite Structure and Test Purposes (TSS &TP)</td>
<td>TS 102844-2</td>
<td>Published</td>
<td></td>
<td></td>
</tr>
<tr>
<td>CALM – Management</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>- Part 1: Protocol Implementation Conformance Statement (PICS) specification</td>
<td>TS 102797-1</td>
<td>Published</td>
<td></td>
<td></td>
</tr>
<tr>
<td>- Part 2: Test Suite Structure and Test Purposes (TSS &TP)</td>
<td>TS 102797-2</td>
<td>Published</td>
<td></td>
<td></td>
</tr>
<tr>
<td>- Part 3: Abstract Test Suite (ATS) and partial PIF output</td>
<td>TS 102797-3</td>
<td>Published</td>
<td></td>
<td></td>
</tr>
<tr>
<td>CALM – M5</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>- Part 1: Protocol Implementation Conformance Statement (PICS) proforma</td>
<td>TS 102985-1</td>
<td>Published</td>
<td></td>
<td></td>
</tr>
<tr>
<td>- Part 2: Test Suite Structure and Test Purposes (TSS &TP)</td>
<td>TS 102985-2</td>
<td>Published</td>
<td></td>
<td></td>
</tr>
<tr>
<td>- Part 3: Abstract Test Suite (ATS) and partial PIF output</td>
<td>TS 102985-3</td>
<td>Published</td>
<td></td>
<td></td>
</tr>
<tr>
<td>CALM – Infra-red systems</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>- Part 1: Protocol Implementation Conformance Statement (PICS) proforma</td>
<td>TS 102930-1</td>
<td>Published</td>
<td></td>
<td></td>
</tr>
<tr>
<td>- Part 2: Test Suite Structure and Test Purposes (TSS &TP)</td>
<td>TS 102930-2</td>
<td>Published</td>
<td></td>
<td></td>
</tr>
<tr>
<td>- Part 3: Abstract Test Suite (ATS) and partial PIF output</td>
<td>TS 102930-3</td>
<td>Published</td>
<td></td>
<td></td>
</tr>
<tr>
<td>CALM – IPv6 networking</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>- Part 1: Protocol Implementation Conformance Statement (PICS)</td>
<td>TS 102981</td>
<td>Published</td>
<td></td>
<td></td>
</tr>
<tr>
<td>- Part 2: Test Suite Structure and Test Purposes (TSS &TP)</td>
<td>TS 102981-2</td>
<td>Published</td>
<td></td>
<td></td>
</tr>
<tr>
<td>- Part 3: Abstract Test Suite (ATS) and partial PIF output</td>
<td>TS 102981-3</td>
<td>Published</td>
<td></td>
<td></td>
</tr>
<tr>
<td>CALM – IPv6 networking</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>- Part 1: Protocol Implementation Conformance Statement (PICS)</td>
<td>TS 102964</td>
<td>Published</td>
<td></td>
<td></td>
</tr>
<tr>
<td>- Part 2: Test Suite Structure and Test Purposes (TSS &TP)</td>
<td>TS 102964-2</td>
<td>Published</td>
<td></td>
<td></td>
</tr>
<tr>
<td>- Part 3: Abstract Test Suite and Partial PIF Information (PIT)</td>
<td>TS 102964-3</td>
<td>Published</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
| Test suite validation CALM Fast services | TS 102101 | Published | | }

Table 2.2.1-2 2013年3月現在でのETSIのC-ITS標準化状況（続き）
米国における C-ITS の標準規格の内、主要なものとしては IEEE における ITS 専用に割り当てた 5.9GHz 帯（5.850～5.925GHz）の WAVE（*4）の下位層を規定する IEEE802.11p、中位層やセキュリティを規定する IEEE1609 シリーズや、SAE における DSRC メッセージセット・データ辞書を規定する SAE J2735、DSRC 最小性能要件を規定する SAE J2945 等がある。（*5）図 2.2.1-2 に米国の C-ITS における DSRC 関連規格を示した

| 図 2.2.1-2 米国の C-ITS における DSRC 関連規格（出典：C2C-CC Forum 2013） |

C-ITS の内、安全系アプリの DSRC 通信に関して、米国は WAVE、欧州は DSRC/G5 と呼称しているが、いずれも IEEE802.11p、IEEE1609 シリーズがベースで、欧米での標準に関する親和性は元々高く、クルマというグローバル市場に対応するために、欧州の DG-INFSO（現 DG_CONNECT）と米国 DOT の RITA は 2009 年 1 月に覚書を交わし、図 2.2.1-3 に示すように C-ITS の開発と標準化の協調体制を構築し協調作業を進めている。図に示す 7 つの WG 中、Standardisation Harmonization、Automation of Road Vehicle Systems、Research in Prove Data は Trilateral として示すように日本の国土交通省が参画した 3 極協調体制で進められている。また、C-ITS の国際調和は欧米日間のみでなく、現在、韓国の国土海洋部、カナダの Transport CANADA やオーストラリアとも行われている。

現在、Trilateral Standardisation Harmonization WG の下に表 2.2.1-3 に示す 6 つの HTG（Harmonization Task Groups）が設置されて標準化協調作業が進められている。このうち HTG#1、#2、#3 に関しては作業が終了しているが、プロトコルスタック識別やジオネットワーキング（ETSI では必須扱いだが米国では現状考慮されていない）のように必ずしも欧米が合致していない面もある。

| 表 2.2.1-3 米国の C-ITS における DSRC 関連規格 |
図 2.2.1-3 C-ITS の EU-米国協調体制
（出典：C2C-CC Forum2013）

表 2.2.1-3 Trilateral Standardisation Harmonization WG の HTG 活動とその状態

<table>
<thead>
<tr>
<th>HTG</th>
<th>活動</th>
<th>Status</th>
</tr>
</thead>
<tbody>
<tr>
<td>HTG 1</td>
<td>ITS Security</td>
<td>2013年始めに作業完．標準化作業開始．報告書公表済み</td>
</tr>
<tr>
<td>HTG 2</td>
<td>IBSM / CAM Harmonization</td>
<td>作業完．2012年 ITS世界会議Vienaでショーケース実施</td>
</tr>
<tr>
<td>HTG 3</td>
<td>ITS Communications</td>
<td>2013年始めに作業完．標準化作業開始．報告書公表済み</td>
</tr>
<tr>
<td>HTG 4</td>
<td>SPAT/MAP</td>
<td>メッセージ標準開発をISO/TC204，CEN/TC278で実施中</td>
</tr>
<tr>
<td>HTG 5</td>
<td>Signal Request & Status IVI</td>
<td>HTG1と3でのギャップ分析結果を反映．2013/09作業アイテム承認し2014/01WG開始（Brussels）</td>
</tr>
<tr>
<td>HTG 6</td>
<td>ITS Security Policy</td>
<td></td>
</tr>
</tbody>
</table>

欧米の上位層でのメッセージ協調の例として、CAM-BSM 協調の例を図 2.2.1-4 に、SPaT/MAP 協調の例を図 2.2.1-5 に示した。主に車車間の基本的なメッセージである欧州のCAM及び米国のBSMは既に協調作業が終了し、2012年のITS世界会議ウィーンでデモも実施された。信号情報利用のアプリに用いるSPaT/MAPは図に示すように共通分部とRegionalな部分に分け、共通部分を協調しRegionalな部分は各国の標準化に任せることとなった。また、SPaT/MAPのみでなく上記を今後のメッセージ協調の基本的考え方とすることで欧米合意がされたようである。

SAE J2735は上記協調結果をもとに改訂中であり、図 2.2.1-6 に示すように SPaT/MAP は欧州I2V配備支援のために先行して2014年の第1Qに改訂され、全体は2015年第2Qを目
標に改訂される予定である。

図 2.2.1-4 メッセージの欧米協調結果：欧州 CAM－米国 BSM のデータ対応（出典：6th ETSI TC-ITS Workshop）

図 2.2.1-5 メッセージの欧米協調結果：SPat/MAP の共通部と Regional 部（出典：6th ETSI TC-ITS Workshop）

図 2.2.1-6 SAE J2735, J2945 の策定スケジュール（出典：6th ETSI TC-ITS Workshop）
日本のC-ITSシステムであるITSスポット、DSSS、ASV等の規格は上記に関連する機関に分散して存在し、JISやJSAEといった規格としては存在しない。したがって、ISO国際標準化では関連各分科会にこれらの関係者が出席し、提案や分析活動を行うことで対応している現状である。また、欧州の標準化においてはCENよりETSIが主導権を握っているため、日本が国際コンビーナを勧めるWG3やWG14では直接ETSIとの協議の場を設けて標準化の協調を進めている。WG14のC-ITS関連では昨年度まで日本自動車研究所と自動車技術会でミラーWGを形成して検討していた危険通知システムに関する基本的な要求事項を記述した「Basic requirements for hazard notification systems」がNPとなったほか、C-ACCに関する標準化提案がなされている。

日本自動車研究所はCAM/DENMのEN版規格の分析・検証結果をもとに、ETSIのCAM/DENM規格の日本における協調可能性を検討している総務省の関連機関や、ASVに対し勉強会の開催等の協力を実施するとともに、2015年以降の実用化を目指す車車間・路車間C-ITSの検討を実施しているITSJapanの分科会や関係委員会に車車間メッセージ等に対する提案を実施してきた。また、C-ITSの国際動向を調査し、国際協調を支援する国際調和検討WGともリエゾンして、日本自動車研究所が調査した欧米のプロジェクト動向なども提供している。

*1：CENELEC；Comite Europeen de Normalisation Electrotechnique
（欧州電気標準化委員会）
*2：SPaT/MAP（信号情報／地図メッセージ）、IVV（車内標識用メッセージ）、PDM/PVD（プローブ情報用メッセージ）
日本企業としてはDENSO、日立／ルネサス、NECが参加
*4：DSRC/WAVE：Wiress Access in Vehicle Environment
*5：ITS車載システムの標準化に関する調査研究報告書H24年度3月参照
2.2.2 米国および欧州の協調システム周波数帯共用問題の現状

5.9GHz帯は1999年に5.9GHz帯の1次用途がITS用にFCC（*1）より割り当てられてから既に十年以上が経過しているにもかかわらず、未だ使用されていない。かかる現状と、IEEE802.11acの周波数不足対策として500MHzの帯域新規確保を目指すFCCの思惑より、2012年に議会が5.4GHz帯、5.9GHz帯のWiFi機器との周波数共用化検討を義務付けし、既存および提案共用化技術および無免許局の動作によるリスクの評価検討をNTIA（*2）に指示した。

米国の動きを受け欧州でもEUが2013年9月に5.9GHz帯のRLAN共用化検討をCEPT（*3）に指令しており、ETSIがCEPTに対し技術インプットを行っている。

図2.2.2-1に米国、欧州の5.9GHz帯のチャンネル構成とこれに対するWiFiの新チャンネル要求を示すとともに、図2.2.2-2に米国および欧州のWiFi共用化検討スケジュールを示した。米国では2014年12月にNTIAが最終推奨案を、欧州では同年11月にCEPTが最終報告書を提示する予定である。

図2.2.2-1米国、欧州の5.9GHz帯のチャンネル構成とWiFiの新チャンネル要求
(出典：C2C_CC Forum2013)
米国では2013年2月にFCCが共用化に対するコメントを要請し、これに対してDOTとRITA等の関連機関やITSアメリカ、カーメーカーやサプライヤ等が反対の、Wi-Fiの標準化を行っているIEEE802、Wi-Fi AllianceやWi-Fiメーカーは賛成のコメントを寄せている。

共用化の検討はIEEE802.11 DSRC共存タイガーチームによって行われており、以下に示すようないくつかの検討案が提示されている。

- 何もしないでITS帯での11acを許容 [共存方法無し]
- ITS帯での11acのライセンスを許可せず [block]
- 11acの使用を屋内での静止使用に限定 [primary/secondary user]
- いくつかのITS channelsを20MHz運用に変更 [redefine ITS standard]
- 11acが11pを検出し切り替え [addition to 11ac standard]

また、WiFi等通信機メーカーのCiscoやQualcom等が共用化の提案をしている。Ciscoの提案は802.11ac側(WiFi)がDSRC/WAVE通信を検知したら送信を停止するもので、802.11ac側にDSRC/WAVEパケットの解読が可能な受信レベルとその常時モニタが必要となる。図2.2.2-3に示すQualcomの提案はDSRC/WAVEの下側chのみを共用化し、下側chの20MHzでの運用を推奨するかわりに、上側のWiFi新ch要求20MHzを取り下げ、ここにDSRC/WAVEのコントロールchを持ってくるというものである。

図2.2.2-4は欧州におけるWiFi共用化時のDSRCへの干渉試験の結果例を示したもので、図のように対策無しでの共用ではDSRC側のパケットエラー率(PER)が30%以上になることが示されており、5.9GHz帯WiFiの共用化の影響はその方法によっては安全サービスに支障をきたすことも考えられ、今後の動向には特に注意をしていく必要がある。
図2.2.2-3 QualcommのDSRC/WAVE－WiFi共用化提案
（出典：6th ETSI TC-ITS Workshop）

図2.2.2-4 WiFi共用化時のDSRCへの干渉試験の結果例（出典：C2C-CC Forum2013）

試験条件：DSRC；174ch（10MHz）、WiFi；175ch（20MHz：174ch十176ch）、
WiFi機器は受信車両に設置

WiFi送信無し：
PERの低下無し

WiFi送信あり：
45m以上でPER30%以上

*1：FCC；Federal Communications Commission（連邦通信委員会）
*2：NTIA；National Telecommunications and Information Administration
（米国電気通信情報庁）
*3：CEPT；European Conference of Postal and Telecommunications Administrations
（欧州郵便電気通信主管庁会議）
第3章 協調システムのプラットフォームの分析と検証

3.1 検証に用いた主な欧州 C-ITS 標準の分析

協調システムのプラットフォームとして作成した想定アプリ、メッセージ案やデータ辞書案を、欧州のDay1 サービスで使用予定のアプリ、メッセージ CAM/DENM や共通データ辞書と比較し、その妥当性を検証するため ETSI の関連規格を分析した。

3.1.1 アプリ要求仕様規格の分析

欧州の道路安全アプリは、衝突リスクの低減による道路安全の向上を目標として、道路における危険情報をドライバーに提供し、注意喚起し、警報し、最終的には車両システムを動作することで衝突を防止するものであり、図 3.1.1-1 および以下に示すように危険状況に対する緊急性を現すTTC（*1）で分類されている。

![図 3.1.1-1 欧州における安全アプリの分類（出典：ETSI TS 101539-1）](attachment:3.1.1-1.png)

- Info 情報提供：
 TPEG（*2）あるいは道路オペレータによる仕様等で、固定／可動情報板や IVS（*3）アプリでの情報提供をデジタル無線放送チャンネルかセルラーネットワークで実現するサービスで路側 ITS-S（*4）か中央 ITS-S で提供することが考えられる。

- Awareness 注意喚起：
 CAM と DENM の送受信にもとづく RHS（*5）アプリで達成されるサービス

- Warning 警報：
自車 ITS-S に隣接する ITS-S からの CAM と DENM の受信にもとづく LCRW（*6）あるいは ICRW（*7）アプリで達成されるサービス

Automatic 自動
警報によるドライバーの回避操作が遅れたり、差し迫った衝突の危険を避けるために車両システム自らが車両を制御する。この場合、ドライバーには事前の警報がない場合もある。

かかる分類により ITS-S の送信部や受信部、無線通信に必要とされる要件が変わることを考えられるため、かかる分類に対応したアプリ要求規格が設定されている。ここでは、欧州の安全系主要メッセージである CAM/DENM を用いる ETSI の 2 つのアプリ規格 TS 101539-1、TS 101539-3 について分析した。TS 101539-1 は「注意喚起」での RHS アプリにおける基本要件を、TS 101539-3 は「警報」での LCRW アプリにおける基本要件を規定するものである。

*1：TTC；Time To Collision（衝突までの時間）
*2：TPEG；Transport Protocol Expert Group
*3：IVS；In-Vehicle Signage（車内標識）
*4：ITS-S；ITS Station。欧州 C-ITS システムにおいて情報交換を行う最上位機能であり。
Vehicle ITS-S（車載機に相当）、Roadside ITS-S（路側機に相当）、Central ITS-S、Personal ITS-S の 4 種類からなる
*5：RHS；Road Hazard Signalling（道路危険合囲）
*6：LCRW；Longitudinal Collision Risk Warning（縦衝突リスク警報）
*7：ICRW；Intersection Collision Risk Warning（交差点衝突リスク警報）

（1）RHS アプリ要求規格の分析

ETSI TS 101539-1：Intelligent Transport Systems (ITS); V2X Applications;
Part 1: Road Hazard Signalling (RHS) application requirements specification

TS 101539-1 は欧州の安全系サービスの基本メッセージである CAM/DENM を用いる、注意喚起アプリ RHS の基本要件を規定したもので、欧州 Day1 で考慮中の注意喚起アプリのユースケースを示すと共に、このユースケースを達成するための ITS-S の機能やその要件、必要なデータ等を規定している。CAM/DENM のメッセージ内容やデータ辞書作成のための参照規格である。
① 目次とスコープ

目次

1. Scope 範囲
2. References 参照
3. Definitions and abbreviations 定義と略語
4. Originating ITS-S performance class definition 送信元 ITS-S 性能クラス定義
5. Road Hazard Signalling application description 道路ハザードシグナリングアプリ記述
6. Application functional requirements アプリ機能要件
7. Application Operational requirements アプリ動作要件
Annex A Driver awareness triggering and presentation ドライバー注意喚起のトリガーと提示
Annex B Application state machine アプリステートマシン
Annex C Application interface アプリインタフェース
Annex D Example of G5 based exchange profile supporting this application このアプリをサポートする G5 ベース交換プロファイル例
Annex E Virtual safety shield concept and TTC calculation 仮想安全シールド概念と TTC 計算
Annex F CAMs interval adjustment based on critical safety situation クリティカル安全状況ベースの CAM 間隔調整
Annex G eCall backup concept eCall バックアップ概念

スコープ

- 協調注意喚起(CA)基本サービスと分散環境通知(DEN)基本サービスに基づく RHS アプリの仕様を提供
- 送信側でのハザード検出と DENM のトリガーに関する動作条件を規定
- DENM ユースケースに特定のデータエレメントや必要かつタイムリーな送信を達成するメッセージ優先指示のための値を定義
- CAM と DENM の生成と送信のための性能要件を規定

② ITS-S 性能クラスの規定

図 3.1.1-2 に車車間通信における EtoE 遅延(*1)を示す。アプリで考慮すべき遅延時間として以下が必要である。

- クリティカル道路安全アプリ(衝突回避)とプリクラッシュアプリに対し EtoE 遅延時間約 300ms 以下が必要
- T5-T1 は送信 MSG から既知
- T6-T5 は受信 ITS-S 処理能力から推定可能

ただし、T1-T0 間の遅延については推定ができないため、以下の 2 クラスを想定する。

- クラス A: T1-T0 ≦ 150msec
- クラス B: T1-T0 ≦ 1.4sec 以下

図において、T0、T1、T5、T6 は以下のようである。

T0: センサからのデータ収集時刻
T1: 送信側タイムスタンプ
T5: 受信側タイムスタンプ
T6: 受信 ITS-S からの判断結果出力時刻
③ RHS アプリのユースケース
このドキュメントでは表 3.1.1-1 に示す 10 のユースケースでの要求仕様を規定している。ただし、将来の拡張もあるとしている。

④ アプリ機能要件
RHS アプリの機能要件として下記を規定している。
● 車両 ITS-S では、ITS-S がアクティブである限り、RHS アプリはアクティブであるものとする
● 路側 ITS-S では、RHS アプリは、ユースケースと運用担当の道路オペレータより提供される特定の規則に従って、開始・終了するものとする
● RHS が性能クラス A に従うなら、クリティカルな交通安全状況を検出でき、それに従い対応する優先順位を設定できなければならない
● 道路ハザードが検出されしたら、RHS アプリは、DENM 送信を始めるよう DEN 基本サービスに要求するものとする
● RHS アプリを実装するすべての ITS-S は、規定の関連領域に存在している ITS-S に DENM を伝える能力を持つものとする
● CAM・DENM は道路安全アプリのために割り当てられた ITS G5A チャンネルで送信されるものとする
表 3.1.1-1 RHS アプリのユースケース

<table>
<thead>
<tr>
<th>ユースケース名称</th>
<th>概要</th>
</tr>
</thead>
<tbody>
<tr>
<td>EN</td>
<td>JN</td>
</tr>
<tr>
<td>1 Emergency vehicle approaching</td>
<td>緊急車両接近</td>
</tr>
<tr>
<td>2 Slow vehicle</td>
<td>低速車両</td>
</tr>
<tr>
<td>3 Stationary vehicle</td>
<td>静止車両</td>
</tr>
<tr>
<td>4 Emergency electronic brake lights</td>
<td>緊急電子ブレーキ灯</td>
</tr>
<tr>
<td>5 Wrong way driving</td>
<td>通行違反</td>
</tr>
<tr>
<td>6 Adverse weather condition</td>
<td>悪天候条件</td>
</tr>
<tr>
<td>7 Hazardous location</td>
<td>危険箇所</td>
</tr>
<tr>
<td>8 Traffic condition</td>
<td>交通条件</td>
</tr>
<tr>
<td>9 Roadwork</td>
<td>道路工事</td>
</tr>
<tr>
<td>10 Human presence on the road</td>
<td>道路上の人の存在</td>
</tr>
</tbody>
</table>

機能要件：送信元車両

送信元車両の機能要件として以下を規定している。

- 性能クラス A の場合、潜在的衝突までの時間により定義される交通安全状況のクリティカルレベルに従って優先レベルを割当
 - デフォルト値：2
 - 自車両がクリティカルな交通安全状況にあると検出した場合：右記状態に応じて 1 or 0

ここで、優先レベルの設定は下表のように設定される。

<table>
<thead>
<tr>
<th>交通安全のクリティカル状況</th>
<th>優先レベル</th>
</tr>
</thead>
<tbody>
<tr>
<td>ドライバー注意喚起状況</td>
<td>2</td>
</tr>
<tr>
<td>警告状況（運転補助か自動）</td>
<td>1</td>
</tr>
<tr>
<td>プリクラッシュ状況</td>
<td>0</td>
</tr>
</tbody>
</table>

—58—
RHS アプリから DEN 基本サービスへ渡す品質パラメタ：優先レベル、位置標定システムタイプ

DENM 間隔に関する DEN 基本サービス規則
・ 最初の DENM は RHS サービスのリクエスト後すぐに送信
・ 優先順位 0 または 1 : 100ms 以下の間隔での DENM の反復 or 更新を要求
・ 優先順位 2 : 100ms～1sec の間隔で DENM の反復 or 更新が可能
 （ex 割り当て安全チャンネルの負荷に従い）

関連領域パラメータを下表のように規定

<table>
<thead>
<tr>
<th>パラメタ</th>
<th>記述</th>
<th>Mandatory(M)/Optional(O)</th>
</tr>
</thead>
<tbody>
<tr>
<td>関連距離</td>
<td>検出された道路ハザードの現在位置からの関連距離</td>
<td>M</td>
</tr>
<tr>
<td>関連交通方向</td>
<td>検出された道路ハザードの現在位置に関する関連交通方向</td>
<td>M</td>
</tr>
</tbody>
</table>

機能要件：受信車両
受信車両の機能要件として以下を規定している。

CAM・DENM 受信の場合、すべての ITS-S 安全アプリはそれらに含まれる全データレメントへのアクセスをもつものとする

関連領域にあると判断した場合、受信車両でアクションを生成するものとする

・ アクションは例えば、DENM 送信元の道路ハザードを合図する「ドライバー注意喚起指令」通報
・ 通知の提示方法は自動車メーカーorサプライヤの裁量

⑤ アプリ動作要件
クラス A およびクラス B のアプリ動作要件を以下のように規定している。

アプリ動作要件：クラス A

クラス A ITS-S 操作システム要件

・ RHS アプリが設定優先順位 0 または 1 に対応するクリティカル交通安全状況を検出する場合には、短期証明書(匿名)は変更されない
・ セキュリティと信頼性ソリューションは、システム要素のフェールか外部攻撃によって引き起こされるかもしれない異常状態を考慮する
・ RHS アプリを含む ITS-S の異常行動が検出された場合、アプリ失敗をドライバーに知らせ、RHS アプリを off 状態に切り換える(フェールセーフ)

クラス A システムの最小性能要件

・ T0-T2 間総遅延時間：クリティカル交通安全状況と使用アクセスネットワークの非混雑状況での 95%で 220 ms 未満
・ T0-T1 間遅延時間：クリティカル交通安全状況と使用アクセスネットワークの非混雑状況での 95%で 150ms 未満
・ End to End (T0-T6 間)遅延時間はできるだけ最小にする。5%以上の連続したパケット
損失が観測されてはならない
・ 予定交信距離は、デフォルトで少なくとも300mとする。
 ，DE・EH、EMI 緩和のために送信電力を减少させる前に、DCC は、RHS アプリの優
先順位が 1 or 0 でないことを確認
・ 受信 ITS-S は少なくとも 5,000/sec の受信メッセージ(CAM と DENM)処理能力を持つ
・ RHS アプリが優先順位 1 or 0 でない場合にのみ、メッセージ時間間隔は増加可能
・ 送信電力は車両速度が許容し、RHS アプリが優先順位 1 or 0 でない場合にのみ低減
可能

アプリ動作要件：クラス B
● クラス B システムの最小性能要件
 CAM と DENM の時間間隔は 100ms～1sec 間に設定
 送信元車両 ITS-S 総遅延時間（T0-T2 間）：1.5sec 未満
 受信元車両 ITS-S 総遅延時間（T3-T6 間）：500ms 未満

*1：EtoE 遅延；End to End 遅延。ここでは T0 から T6 までの時間を言う

(2) LCRW アプリ要求規格の分析

ETSI TS 101539-3 : Intelligent Transport Systems (ITS); V2X Applications;
Part 3: Longitudinal Collision Risk Warning (LCRW) application requirements specification

TS 101539-3 は欧州の安全系サービスの基本メッセージである CAM/DENM を用いる、警
報アプリ LCRW の基本要件を規定したものです。欧州 Day1 で考慮中の警報アプリのユース
ケースを示すと共に、このユースケースを達成するための ITS-S の機能やその要件、必要
なデータ等を規定している。TS 101539-1 同様、CAM/DENM のメッセージ内容やデータ
辞書作成のための参照規格である。
スコープ
● CAM/DENM を使用する LCRW アプリと必要なパラメタ、アプリ動作に関する仕様を提供
● LCRW アプリの機能要件と動作要件の仕様を含む

② ITS-S 性能クラスの規定
● 衝突警報アプリに対し EtoE 遅延時間約 300ms 以下が必要
T1-T0 間の遅延時間に関し、以下の 2 クラスを想定する。
● クラス A : T1-T0 ≦ 150msec
● クラス B : T1-T0 に関する要件なし

③ LCRW アプリのユースケース
このドキュメントでは、表 3.1.1-2 示す追突・前方/側方衝突危険警報、正面衝突危険警報の計 9 のユースケースを対象とした要求仕様を規定している。

表 3.1.1-2 LCRW アプリのユースケース

<table>
<thead>
<tr>
<th>分類</th>
<th>ユースケース名称</th>
<th>概要図</th>
</tr>
</thead>
<tbody>
<tr>
<td>EN</td>
<td>JN</td>
<td></td>
</tr>
<tr>
<td>達成・前方/側方衝突危険警報</td>
<td>Safety relevant lane change</td>
<td>安全車線変更</td>
</tr>
<tr>
<td></td>
<td>Emergency electronic brake light/ Traffic condition</td>
<td>緊急電子ブレーキ灯/交通状態</td>
</tr>
<tr>
<td></td>
<td>Roadworks</td>
<td>道路工事</td>
</tr>
<tr>
<td></td>
<td>Stationary vehicle</td>
<td>静止車両</td>
</tr>
<tr>
<td></td>
<td>Stability problem</td>
<td>安定性問題</td>
</tr>
<tr>
<td></td>
<td>Collision risk warning from a third party</td>
<td>第 3 者からの衝突警報</td>
</tr>
<tr>
<td>正面衝突危険警報</td>
<td>Wrong way vehicle driving</td>
<td>通行違反</td>
</tr>
<tr>
<td></td>
<td>Safety relevant vehicle overtaking warning</td>
<td>安全車両追越警報</td>
</tr>
<tr>
<td></td>
<td>Collision risk warning from third party</td>
<td>第 3 者からの衝突警報</td>
</tr>
</tbody>
</table>
アプリ機能要件

LCRW アプリの機能要件として下記を規定している。

● 縦方向衝突リスク検出要件：
 - クリティカルな交通安全状況が検出され、ドライバーに警報する必要性がある場合、アプリ優先レベルは 1 以上に設定
 - アプリ優先順位が 1 以上の場合、アプリは、目標車両を見失わないよう匿名 ID でないセキュリティを要求してもよい
 - 状況判断により、自車（SV）は目標車両（TV）との縦方向衝突の危険を分析

● 警報トリガ要件：
 - HMI との相互作用によりドライバーへの警報をトリガできなければならない
 - 警報トリガ時間は、予測される衝突に対する距離と TTC を考慮してもよい

● 第 3 者 ITS-S 警報機能要件：
 - アプリは「衝突リスク」DENM 伝送の送信をトリガできなければならない
 - アプリは衝突リスク消滅検出時に DENM 伝送の終了を要求しなければならない

アプリ動作要件

● セキュリティと信頼度要件
 - 各匿名アップデート間で、CAM/DENM 生成は共通の匿名を使用
 - アプリ異常検出時は、ユーザにどんな警報もトリガしない。異常の検出を報知してもよい

● システム最小性能要件
 - 縦方向アライメントと車両位置精度：SV-TV の間縦方向アライメントに関する見積りの信頼水準は少なくとも 95% でなければならない。DENM 受信時、車両の軌道と向きが受信 DENM の関連領域内が確認するものとする
 - 通信範囲：TV の必要交信距離はチャネル低負荷時に 300m とする。G5A チャンネルが幅軸していない場合、アンテナでの送信パワーレベルは少なくとも 18dBm とする
 - システム End to End (T0-T6 間)遅延時間：LCRW はクラス A を規定。クリティカル安全状況では、T4-T6 遅延時間 80msec 以下を要求
 - メッセージ処理能力：少なくとも 1000/sec の CAM/DENM の処理能力を持つ
 - G5A のための幅軸制御：アプリ優先レベルが 1 以上の場合、伝送間隔への影響を幅軸状態で最小とする DCC プロフィールでの CAM/DENM 送信を要求

● 第 3 者 ITS-S のシステム性能要件
 - 少なくとも 1000/sec の CAM/DENM の処理能力を持つ
 - アプリ優先レベルが 1 以上の場合は DENM 送信間隔が反复間隔を 100msec に設定
3.1.2 主要メッセージ CAM,DENM の EN 版規格の分析

欧州の C-ITS の主に安全系サービスに使用される主要メッセージである CAM、DENM は欧州の FOT 結果の反映や、米国の C-ITS のメッセージ・データ辞書を規定した SAE J2735 の策定チームとの協調を経て、以下のように TS（技術仕様）から EN（欧州標準）に格上げ改訂され、発行された。米国の SAE J2735 も欧米協調を経て改訂作業中であるが、未だ改訂版が発行されていない。そこで、かかる最新版の CAM/DENM を分析しその結果をもとに日本自動車研究所で策定したメッセージ案やデータ辞書案を検証することとした。

· CAM : ETSI TS 102 637-2 → EN 302637-2
 Intelligent Transport Systems (ITS); Vehicular Communications; Basic Set of Applications; Part 2: Specification of Cooperative Awareness Basic Service (CAM)
· DENM : ETSI TS 102 637-3 → EN 302637-3
 Intelligent Transport Systems (ITS); Vehicular Communications; Basic Set of Applications; Part 3: Specifications of Decentralized Environmental Notification Basic Service (DENM)

(1) EN 版 CAM 規格の分析

CAM（Cooperative Awareness Message：協調注意喚起メッセージ）は ITS-S よりある時刻でのその ITS-S の位置や状態を、通常は一定間隔で送信するメッセージ（I am here 型のハートビートメッセージ）であり、最も基本的なメッセージである。米国の SAE J2735 における BSM（Basic Safety Message）に相当する。

① 目次とスコープ

| 1. Scope スコープ |
| 2. References 参照 |
| 3. Definitions and abbreviations 定義と略語 |
| 4. CA basic service introduction CA 基本サービス序論 |
| 5. CA basic service functional description CA 基本サービスの機能記述 |
| 6. CAM dissemination CAM 流布 |
| 7. CAM Format Specification CAM フォーマット仕様 |
| Annex A (normative): ASN.1 specification of CAM CAM の ASN.1 仕様 |
| Annex B (normative): Description for data elements and data frames データ要素とデータフレームのための記述 |
| Annex C (informative): Protocol operation of the CA basic service CA 基本サービスのプロトコル操作 |
| Annex D (informative): Flow chart for CAM generation frequency management CAM 生成周波数管理のフローチャート |
| Annex E (informative): Extended CAM generation 拡張 CAM 生成 |

スコープ

・ CAM は、互いの認識を作成、維持し、道路網における協調性能をサポートするために
ITS-S間で交換されるメッセージである

・CAMは送信元ITS-Sの状態と属性情報を含み、ITS-Sのタイプにより内容は異なる
・車両ITS-Sでは、状態情報は時間、位置、動作状態、活性システム等を含み、属性情報は道路交通等における寸法、車両タイプ、および役割に関するデータを含む
・受信ITS-SはCAM受信で送信元ITS-Sの存在の認識、タイプ、状態を獲得できる
・CAM送信は、道路交通を構成するすべてのITS-S(車両ITS-S、パーソナルITS-S等)に存在しなければならない

②CA基本サービスの機能とインタフェース

CA基本サービスは、他のITS-SとのCAM交換のためのネットワーク＆トランスポート（N&T）層とNF-SAP(*)、CAM送受信のためのセキュリティサービスへのSecurityエンティティーとSF-SAP、管理エンティティーとMF-SAP、受信されたCAMデータをアプリに提供するFA-SAPを通して各インタフェースする。図3.1.2-1にITS-SアーキテクチャにおけるCA基本サービスを、図3.1.2-2にCA基本サービスの機能ブロック図を示す。

図3.1.2-1 ITS-SアーキテクチャにおけるCA基本サービス

図3.1.2-2 CA基本サービスの機能ブロック図
CA 基本サービスにおける提供サブ機能は以下の通りである。

- CAM 符号化：フォーマットに従い CAM を構成
- CAM 復号化：受信 CAM を復号
- CAM 送信管理：CAM 送信操作の起動と終了、CAM 生成頻度の決定、生成のトリガー
- CAM 受信管理：「CAM 復号」機能のトリガー、LDM か ITS アプリへの受信 CAM 情報の提供、受信 CAM の情報のチェック

N&T 層インタフェース（NF-SAP）における受け渡しデータの規定

表 3.1.2-1 に CA 基本サービスーN&T 層間受渡しデータを、表 3.1.2-2 に送信元 ITS-S における CA 基本サービスから GeoNetworking/BTP（*2）への PCI（*3）を示す。

<table>
<thead>
<tr>
<th>カテゴリ</th>
<th>データ</th>
<th>必要データ</th>
<th>M/O</th>
</tr>
</thead>
<tbody>
<tr>
<td>CA 基本サービス→N&T 層</td>
<td>CAM</td>
<td>(cam)</td>
<td>M</td>
</tr>
<tr>
<td></td>
<td>PCI（プロトコル制御情報）</td>
<td>N&T 層中で適用のプロトコルスタックによる</td>
<td>M</td>
</tr>
<tr>
<td>N&T 層→CA 基本サービス</td>
<td>受信 CAM</td>
<td>(cam)</td>
<td>M</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>カテゴリ</th>
<th>データ</th>
<th>必要データ</th>
<th>M/O</th>
<th>条件</th>
</tr>
</thead>
<tbody>
<tr>
<td>CA 基本サービス→GeoNetworking/BTP</td>
<td>メッセージタイプ</td>
<td>cam.header.messageID</td>
<td>M</td>
<td></td>
</tr>
<tr>
<td></td>
<td>BTP タイプ</td>
<td>BTP ヘッダータイプ B (EN 302 636−5−1 (V 0.0.4))</td>
<td>O</td>
<td>管理情報ベース(MIB)で設定される ITS-S 構成によっては提供されないか、値が MIB で設定されるデフォルト値と異なる場合に受渡し必須</td>
</tr>
<tr>
<td></td>
<td>送信先ポート</td>
<td>－</td>
<td>O</td>
<td>(同上)</td>
</tr>
<tr>
<td></td>
<td>送信先ポート情報</td>
<td>(予約)</td>
<td>O</td>
<td>(同上)</td>
</tr>
<tr>
<td></td>
<td>GN Packet 輸送タイプ</td>
<td>GeoNetworking SHB</td>
<td>O</td>
<td>(同上)</td>
</tr>
<tr>
<td></td>
<td>トラフィッククラス</td>
<td>EN 302 636−4−1 (V 0.0.2)で定義</td>
<td>M</td>
<td></td>
</tr>
<tr>
<td></td>
<td>GN 最大パケット生存期間</td>
<td>1 秒を超えてはならない</td>
<td>M</td>
<td></td>
</tr>
<tr>
<td></td>
<td>長さ</td>
<td>CAM の長さ</td>
<td>M</td>
<td></td>
</tr>
</tbody>
</table>

③ CAM の流布

CAM 流布に関する要件

CAM 流布の要件として以下が規定されている。

- ITS G5 使用時の制御チャンネル(G5-CCH)の使用
- 送信元 ITS-S の直達通信範囲内の受信 ITS-S までの伝達
- 受信 CAM の他 ITS-S への転送禁止
基本サービスの起動と終了に関する規定

CA 基本サービスの起動・終了要件として以下が規定されている。

・ 起動は異なるタイプの ITS-S（ex 車両 ITS-S、路側 ITS-S、パーソナル ITS-S）で異なってもよい
・ CA 基本サービスがアクティブな限り、CAM 生成は、CA 基本サービスでトリガーされ、管理されなければならない
・ 車両 ITS-S では、CA 基本サービスは ITS-S 起動で起動され、ITS-S 非活性化時に終了

CAM 生成頻度管理に関する規定

CAM の生成間隔に関連して以下が規定されている。

・ $T_{GenCamMin} (100 \text{ms}) \leq T_{GenCam} (\text{CAM 生成間隔}) \leq T_{GenCamMax} (1000 \text{ms})$
 ←TS 版と同。ただし TS 版では CAM ユースケース毎の最小繰り返し周波数と許容受信遅れを示していたが EN 版ではなし
・ CAM 生成トリガー状態を $T_{CheckCamGen}$ 毎にチェック：
 $T_{CheckCamGen} \leq T_{GenCamMin} \leftarrow TS 版では 100 \text{msec} 毎
・ チャンネル輻轆時、分散輻轆制御(DCC) 要件に従い CAM 生成の短縮最小時間間隔
 $T_{GenCam-Dcc}$ を提供：
 $T_{GenCamMin} \leq T_{GenCam-DCC} \leq T_{GenCamMax}$
 ←TS 版では輻轆状態での頻度変更規定無し
・ T_{GenCam} デフォルト値：$T_{GenCamMax}$

CAM 生成トリガー条件に関する規定

CAM 生成のトリガー条件は以下のように規定されている。

・ 最後の CAM 生成からの経過時間 $\geq T_{GenCam-Dcc}$ & 以下条件の 1 つ
 送信元 ITS-S の現在方位と前回の CAM の方位の絶対差 > 4° ←TS 版と同
 送信元 ITS-S の現在位置と前回の CAM の位置の絶対差 > 4m ←TS 版では 5m
 送信元 ITS-S の現在速度と前回の CAM の速度の絶対差 > 0.5m/s ←TS 版では 1m
・ 最後の CAM 生成からの経過時間 $\geq T_{GenCam} \& \geq T_{GenCam-Dcc}$

CAM 構築要件

CAM の構築要件は以下のようである。

・ CAM 生成の必要がある場合、CA 基本サービスは、必須コンテナ（基本コンテナ+高頻度コンテナ）を構築しなければならない
・ オプションコンテナ（低頻度コンテナ、特殊車両コンテナ）を含んでもよい
・ 低頻度コンテナ：CA 基本サービス起動から最初の CAM 生成に含まれていなければならない
 低頻度コンテナ生成 CAM からの経過時間 $\geq 500 \text{ms} : CAM に低頻度コンテナを含む必要有
・ 特殊車両コンテナ：CA 基本サービス起動から最初の CAM 生成に含まれていなければならない
 特殊車両コンテナ生成 CAM からの経過時間 $\geq 500 \text{ms} : CAM に特殊車両コンテナを含
CAM 時間要件
CAM の生成時間とタイムスタンプは以下のように規定されている。
● CAM 生成時間：（CAM がネットワークトランスポート層に渡される時刻）－（CAM 生成トリガー時刻）≦ 50ms
←TS 版と同
● CAM タイムスタンプ：CAM の提供位置での時刻。
CAM 生成時刻とタイムスタンプの差＜32767ms

④ CAM の概要構成
7 章の CAM フォーマット仕様、Annex A の CAM の ASN.1 仕様より CAM の構成を分析し、以下にその概要構成を示した。

<table>
<thead>
<tr>
<th>No</th>
<th>記述名(JN)</th>
<th>M/O</th>
<th>構成</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 DS</td>
<td>SubPduHeader</td>
<td></td>
<td>SubPduヘッダー</td>
</tr>
<tr>
<td>2</td>
<td>cam</td>
<td></td>
<td></td>
</tr>
<tr>
<td>5 DS</td>
<td>CoopAwareness</td>
<td></td>
<td>注意情報</td>
</tr>
<tr>
<td>6 DF</td>
<td>GenerationDateTime</td>
<td></td>
<td>CAM生成時刻差分</td>
</tr>
<tr>
<td>7 DF</td>
<td>CamParameters</td>
<td></td>
<td>CAMパラメータ</td>
</tr>
<tr>
<td>8 DF</td>
<td>BasicContainer</td>
<td></td>
<td>基本コンテナ</td>
</tr>
<tr>
<td>20 DF</td>
<td>HighFrequencyContainer</td>
<td></td>
<td>高頻度コンテナ</td>
</tr>
<tr>
<td>21 DF</td>
<td>BasicVehicleContainerHighFrequency</td>
<td></td>
<td>高頻度車両コンテナ</td>
</tr>
<tr>
<td>55 DF</td>
<td>EmptyRSUContainerHighFrequency</td>
<td></td>
<td>未設定</td>
</tr>
<tr>
<td>56 DF</td>
<td>LowFrequencyContainer</td>
<td></td>
<td>低頻度コンテナ</td>
</tr>
<tr>
<td>57 DF</td>
<td>BasicVehicleContainerLowFrequency</td>
<td></td>
<td>低頻度車両コンテナ</td>
</tr>
<tr>
<td>67 DF</td>
<td>SpecialVehicleContainer</td>
<td></td>
<td>特殊車両コンテナ</td>
</tr>
<tr>
<td>68 DF</td>
<td>PublicTransportContainer</td>
<td></td>
<td>公共輸送コンテナ</td>
</tr>
<tr>
<td>73 DF</td>
<td>SpecialTransportContainer</td>
<td></td>
<td>特殊輸送コンテナ</td>
</tr>
<tr>
<td>76 DF</td>
<td>DangerousGoodsContainer</td>
<td></td>
<td>危険物コンテナ</td>
</tr>
<tr>
<td>78 DF</td>
<td>RoadWorksContainerBasic</td>
<td></td>
<td>道路工事コンテナ基本</td>
</tr>
<tr>
<td>84 DF</td>
<td>RescueContainer</td>
<td></td>
<td>救急コンテナ</td>
</tr>
<tr>
<td>87 DF</td>
<td>SafetyCarContainer</td>
<td></td>
<td>安全確認車コンテナ</td>
</tr>
</tbody>
</table>

基本コンテナ：送信元 ITS-S の基本情報として送信元 ITS-S のタイプ、送信元 ITS-S の最新の地理的的位置を記述
車両 ITS-S コンテナ：高頻度車両コンテナ（M）と低頻度車両コンテナ（O）を含む。
高頻度コンテナは向きや速度、加速度のように車両 ITS-S の動的状態情報を、低頻度コンテナは特殊車両のコンテナ区分や外部灯火などを記述
特殊車両コンテナ：公共交通のような道路交通における特殊な役割をもつ車両 ITS-S のためのコンテナ
● バス等公共の輸送車両：公共輸送コンテナ
● 長さ／幅／高さ／重量などが特殊な貨物の輸送：特殊輸送コンテナ
● 危険物の輸送：危険物コンテナ
● 道路工事作業：道路工事コンテナ基本
● 救急活動中の救急車両：救急コンテナ
● 緊急活動中の緊急車両：緊急コンテナ

表 3.1.2-3 CAM の概要構成

<table>
<thead>
<tr>
<th>No</th>
<th>記述名(EN)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>ITS-PduHeader</td>
</tr>
<tr>
<td>2</td>
<td>ITS-S</td>
</tr>
<tr>
<td>5</td>
<td>CoopAwareness</td>
</tr>
<tr>
<td>6</td>
<td>GenerationDateTime</td>
</tr>
<tr>
<td>7</td>
<td>CamParameters</td>
</tr>
<tr>
<td>8</td>
<td>BasicContainer</td>
</tr>
<tr>
<td>20</td>
<td>HighFrequencyContainer</td>
</tr>
<tr>
<td>21</td>
<td>BasicVehicleContainerHighFrequency</td>
</tr>
<tr>
<td>55</td>
<td>EmptyRSUContainerHighFrequency</td>
</tr>
<tr>
<td>56</td>
<td>LowFrequencyContainer</td>
</tr>
<tr>
<td>57</td>
<td>BasicVehicleContainerLowFrequency</td>
</tr>
<tr>
<td>67</td>
<td>SpecialVehicleContainer</td>
</tr>
<tr>
<td>68</td>
<td>PublicTransportContainer</td>
</tr>
<tr>
<td>73</td>
<td>SpecialTransportContainer</td>
</tr>
<tr>
<td>76</td>
<td>DangerousGoodsContainer</td>
</tr>
<tr>
<td>78</td>
<td>RoadWorksContainerBasic</td>
</tr>
<tr>
<td>84</td>
<td>RescueContainer</td>
</tr>
<tr>
<td>87</td>
<td>SafetyCarContainer</td>
</tr>
</tbody>
</table>

-67-
• 特殊輸送車両などに付随する安全確認車：安全確認車コンテナ

EN版のCAMの概要について以下にまとめた。

● CAMは全ての種類のITS-Sにとっての必須のMSGだが、本規格は車両ITS-Sにフォーカスしている。他のITS-Sにも拡張可能な形式となっているが現状では規定無し
● CAMもEN版ではDENMと同様のコンテナ構成になり形として洗練された
● 一般車のCAMは必須のヘッダー＋CAM生成時刻＋基本コンテナ＋高頻度コンテナ
● 特殊車両（公共輸送、救急等）のCAMは上記に加え、低頻度コンテナ中のDE_車両役割で特殊車両コンテナから該当する車両コンテナを選択して追加する方式
● CAM生成時刻はTS版のような絶対時刻ではなく剰余時刻差分（約60sec）の形

*1：SAP；Service Access Point（サービスアクセスポイント）
*2：Basic Transport Protocol（基本的伝送プロトコル）
*3：PCI；Protocol Control Information（プロトコル制御情報）

(2) EN版DENM規格の分析

DENM（Decentralized Environmental Notification Message：分散型環境通知メッセージ）はITS-Sにイベントが生じたり（例えば事故や故障による車線上への停止等）、ITS-Sがイベントを検出した場合（例えば悪天候や路面凍結等）のときに、そのイベントをそのITS-Sで把握している間に限って送信するメッセージである。米国のSAE J2735においては1対1に対応するメッセージが存在しないが、して言えば拡張タイプのBSM（Part1＋2）が相当する。

① 目次とスコープ

<table>
<thead>
<tr>
<th>目次</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. Scope スコープ</td>
</tr>
<tr>
<td>2. References 参照</td>
</tr>
<tr>
<td>3. Definitions, symbols and abbreviations 定義,シンボル,および略語</td>
</tr>
<tr>
<td>4. DEN basic service introduction DEN基本サービス序論</td>
</tr>
<tr>
<td>5. DEN basic service functional description DEN基本サービスの機能記述</td>
</tr>
<tr>
<td>6. DENM dissemination DENM流布</td>
</tr>
<tr>
<td>7. DENM format specification DENMフォーマット仕様</td>
</tr>
<tr>
<td>8. Protocol operation of the DEN basic service DEN基本サービスのプロトコル操作</td>
</tr>
<tr>
<td>Annex A (normative): ASN.1 specification of DENM DENMのASN.1仕様</td>
</tr>
<tr>
<td>Annex B (normative): Description for data elements and data frames</td>
</tr>
<tr>
<td>Annex C (informative): Bibliography 図書目録</td>
</tr>
<tr>
<td>History</td>
</tr>
</tbody>
</table>

スコープ
● BSA交通安全アプリをサポートするDEN基本サービスの仕様を提供
● DENMとそのプロトコル取り扱いの構文と意味論を規定
② DEN 基本サービスの機能とインタフェース

DENM は、検出したイベントを道路ユーザに警告するために ITS アプリで主に使用されるファシリティー層のメッセージであり、ITS-S で検出できるさまざまなイベントに関する情報を含んでいる。

図 3.1.2-3 に DEN 基本サービスでサポートされる ITS-S アプリのための一般的なデータフローを示す。このデータフローに示すように、ITS オースケースの一般的な処理手順は以下の通りである。

• 送信元 ITS-S は、イベント検出時、そのイベントについての情報を関連領域内に位置する他 ITS-S に流布するために DENM を送信
• DENM 送信は、ITS アプリ層によって開始・終了
• DENM 送信は繰り返してもよい
• ITS-S は DENM を転送してもよい（転送 ITS-S）
• DENM 送信の終了は、イベントの事前定義の満了時後に自動的に達成されるか、または ITS-S でイベントの消失を知らせる特別な DENM を送信
• 受信 ITS-S は、DENM の情報がその ITS-S に関連している限り、適切な警告あるいは情報をユーザに提供

![DEN 基本サービスのデータフロー](image)

DEN 基本サービスは DENM プロトコルを操作するファシリティー層エンティティーであり、ITS アプリ層のエンティティーに対するサービスを提供する。送信元 ITS-S では、DENM の送信をトリガーし、更新し、終了する。受信 ITS-S では、受信 DENM を処理し、
ITSアプリでの使用に利用可能な情報を形成するとともに、オプションとして転送機能を提供してもよい。表3.1.2-4にDENMのタイプを示すとともに、図3.1.2-4にITS-SアーキテクチャにおけるDEN基本サービスを、図3.1.2-5にDEN基本サービスの機能ブロック図を示す。

<table>
<thead>
<tr>
<th>内容</th>
<th>ActionID</th>
<th>Container</th>
</tr>
</thead>
<tbody>
<tr>
<td>新DENM</td>
<td>新規</td>
<td>管理コンテナ、状況コンテナ(O)、位置コンテナ(O)、アラカルトコンテナ(O)</td>
</tr>
<tr>
<td>更新DENM</td>
<td>変更無し</td>
<td>管理コンテナ、状況コンテナ(O)、位置コンテナ(O)、アラカルトコンテナ(O)</td>
</tr>
<tr>
<td>キャンセルDENM</td>
<td>変更無し</td>
<td>管理コンテナ</td>
</tr>
<tr>
<td>否定DENM</td>
<td>変更無し</td>
<td>管理コンテナ</td>
</tr>
</tbody>
</table>

（O）：Option

図3.1.2-4 ITS-SアーキテクチャにおけるDEN基本サービス
DEN基本サービスにおける提供サブ機能は以下の通りである。

- DENM符号化:フォーマットに従いDENMを構成
- DENM復号化:受信DENMを復号
- DENM送信管理:
 - 新DENMの生成、更新DENMの生成、DENM送信の終了、DENMの反復
- DENM受信管理:
 - 受信ITS-Sメッセージテーブルの更新、受信無効DENMの破棄、
 - ITSアプリand/or他ファシリティー層エンティティーへの受信DENMデータの提供
- DENM転送保持:
 - 有効持続時間、受信DENMを格納し、適切な時に関連領域に位置するITS-Sに転送

送信元ITS-Sにおいて、ITSアプリは、DENM送信のために、DEN基本サービスに要求を送付する。この場合のアプリ要求タイプと生成されるDENMタイプの関係を表3.1.2-5に示す。

<table>
<thead>
<tr>
<th>アプリ要求タイプ</th>
<th>生成DENMタイプ</th>
</tr>
</thead>
<tbody>
<tr>
<td>AppDENM_trigger</td>
<td>New DENM</td>
</tr>
<tr>
<td>AppDENM_update</td>
<td>Update DENM</td>
</tr>
<tr>
<td>AppDENM_termination</td>
<td>Cancellation DENM if the originator ITS-S has generated the new DENM or Negation DENM otherwise</td>
</tr>
</tbody>
</table>

送信元ITS-Sにおいて、上記各アプリ要求タイプAppDENM_trigger、AppDENM_update、AppDENM_terminationにおいてアプリとDEN基本サービス間で各アプリ要求タイプに応じてインタフェースIF.DEN.1を通して受け渡されるデータを各々表3.1.2-6、表3.1.2-7、表3.1.2-8に示す。
表 3.1.2-6 AppDENM_trigger でインタフェース IF.DEN.1 を通して受け渡すデータ

<table>
<thead>
<tr>
<th>カテゴリ</th>
<th>データ</th>
<th>必要データ</th>
<th>M/O</th>
<th>条件</th>
</tr>
</thead>
<tbody>
<tr>
<td>アプリ → DEN 基本サービス</td>
<td>事象検知時刻</td>
<td>DENM.denm.management.detectionTime</td>
<td>M</td>
<td></td>
</tr>
<tr>
<td></td>
<td>イベント有効期間</td>
<td>DENM.denm.management.validityDuration</td>
<td>O</td>
<td>ITS アプリがイベント満了時間検出する場合</td>
</tr>
<tr>
<td></td>
<td>反復持続時間</td>
<td>RepetitionDuration として指示された DENM 反復の持続時間, validityDuration を超えてはならない</td>
<td>O</td>
<td>ITS アプリが DENM 反復を要求する場合</td>
</tr>
<tr>
<td></td>
<td>状況コンテナに含まれる全情報</td>
<td>DENM.denm.situation</td>
<td>O</td>
<td>アプリは、他ファシリティーからのデータ収集のために DEN 基本サービスを要求してもよい</td>
</tr>
<tr>
<td>DENM 位置コンテナに含まれる全情報</td>
<td>DENM.denm.location</td>
<td>O</td>
<td>(同上)</td>
<td></td>
</tr>
<tr>
<td>DENM アラカルトコンテナに含まれる全情報</td>
<td>DENM.denm.alacarte</td>
<td>O</td>
<td>ITS アプリがアラカルトコンテナの送信を要求する場合</td>
<td></td>
</tr>
<tr>
<td>イベント関連領域</td>
<td>DENM.denm.management.relevanceDistance & DENM.denm.management.relevanceTrafficDirection</td>
<td>M</td>
<td></td>
<td></td>
</tr>
<tr>
<td>DENM のトラフィッククラス</td>
<td>GeoNetworking/BTP が使用されている場合, GN トラフィッククラス（EN 302 636-4-1 で規定）</td>
<td>M</td>
<td></td>
<td></td>
</tr>
<tr>
<td>DENM 反復のための送信間隔</td>
<td>msec 単位</td>
<td>O</td>
<td>ITS アプリが DENM 反復を要求する場合</td>
<td></td>
</tr>
<tr>
<td>KAF 要求</td>
<td>DENM の転送保持を実現する DENM 基本サービスへのアプリ要求</td>
<td>O</td>
<td>ITS アプリが DENM の FAF を要求する場合</td>
<td></td>
</tr>
<tr>
<td>DENM 基本サービス要求アプリ</td>
<td>アクション ID か更新検出のための他の適切な識別子</td>
<td>DENM.denm.management.actionID</td>
<td>M</td>
<td>DEN 基本サービスは要求 ITS アプリへの DEN 基本サービスで作成されたアクション ID か他の適切な識別子を返さなければならない</td>
</tr>
<tr>
<td>失敗通知</td>
<td>DEN 基本サービスは要求アプリに失敗通知を返さなければならない</td>
<td>O</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

表 3.1.2-7 AppDENM_update でインタフェース IF.DEN.1 を通して受け渡すデータ

<table>
<thead>
<tr>
<th>カテゴリ</th>
<th>データ</th>
<th>必要データ</th>
<th>M/O</th>
<th>条件</th>
</tr>
</thead>
<tbody>
<tr>
<td>アプリ → DEN 基本サービス</td>
<td>アクション ID か更新検出のための他の適切な識別子</td>
<td>DENM.denm.management.actionID</td>
<td>M</td>
<td></td>
</tr>
<tr>
<td></td>
<td>イベント更新検出時刻</td>
<td>DENM.denm.management.detectionTime</td>
<td>M</td>
<td></td>
</tr>
<tr>
<td></td>
<td>イベント有効期間</td>
<td>DENM.denm.management.validityDuration</td>
<td>O</td>
<td>データ更新が検出される場合</td>
</tr>
<tr>
<td></td>
<td>状況コンテナに含まれる全情報</td>
<td>DENM.denm.situation</td>
<td>O</td>
<td>(同上)</td>
</tr>
<tr>
<td>DENM 位置コンテナに含まれる全情報</td>
<td>DENM.denm.location</td>
<td>O</td>
<td>(同上)</td>
<td></td>
</tr>
<tr>
<td>DENM アラカルトコンテナに含まれる全情報</td>
<td>DENM.denm.alacarte</td>
<td>O</td>
<td>(同上)</td>
<td></td>
</tr>
<tr>
<td>イベント関連領域</td>
<td>DENM.denm.management.relevanceDistance & DENM.denm.management.relevanceTrafficDirection</td>
<td>O</td>
<td>(同上)</td>
<td></td>
</tr>
</tbody>
</table>
DENM のトラフィッククラス | GeoNetworking/BTP が使用されている場合、GN トラフィッククラス（EN 302 836-4-1 で規定） | O | (同上)
DENM 反復の送信間隔 | msec 単位 | O | KAF 要求 | DENM の転送保持を実現する DEN 基本サービスへのアプリ要求 | O | ITS アプリが DENM の FAF を要求する場合
DEN 基本サービス要 求アプリ | 失敗通知 | DEN 基本サービスは要求アプリに失敗通知を返さなければならない | O

表 3.1.2-8 AppDENM_ termination でインタフェース IFDEN.1 を通じて受け渡すデータ

<table>
<thead>
<tr>
<th>カテゴリ</th>
<th>データ</th>
<th>必要データ</th>
<th>M/O</th>
<th>条件</th>
</tr>
</thead>
<tbody>
<tr>
<td>アプリ</td>
<td>アクション ID か終了検出のための他の適切な識別子</td>
<td>DENM.denm.management.actionID</td>
<td>M</td>
<td></td>
</tr>
<tr>
<td>DEN 基本サービス</td>
<td>イベント終了検出時刻</td>
<td>DENM.denm.management.detectionTime</td>
<td>M</td>
<td></td>
</tr>
<tr>
<td>DENM</td>
<td>反復持続時間</td>
<td>DENM.denm.management.validityDuration</td>
<td>O</td>
<td>アプリが DENM 反復を要求する場合</td>
</tr>
<tr>
<td>DENM のトラフィッククラス</td>
<td>GeoNetworking/BTP が使用されている場合、GN トラフィッククラス（EN 302 836-4-1 で規定）</td>
<td>DENM 反復の送信間隔</td>
<td>msec 単位</td>
<td>O</td>
</tr>
<tr>
<td>KAF 要求</td>
<td>DENM の転送保持を実現する DEN 基本サービスへのアプリ要求</td>
<td>O</td>
<td>ITS アプリが DENM の FAF を要求する場合</td>
<td></td>
</tr>
<tr>
<td>DEN 基本サービス要 求アプリ</td>
<td>失敗通知</td>
<td>DEN 基本サービスは要求アプリに失敗通知を返さなければならない</td>
<td>O</td>
<td></td>
</tr>
</tbody>
</table>

また、受信 ITS-S において、DEN 基本サービスからアプリへインタフェース IFDEN.2 を通じて受け渡されるデータを表 3.1.2-9 に示す。

表 3.1.2-9 インタフェース IFDEN.2 を通じて受け渡すデータ

<table>
<thead>
<tr>
<th>カテゴリ</th>
<th>データ</th>
<th>必要データ</th>
<th>M/O</th>
<th>条件</th>
</tr>
</thead>
<tbody>
<tr>
<td>DEN 基本サービス</td>
<td>ITS アプリ</td>
<td>DENM [denm]の全体または一部</td>
<td>O</td>
<td>受信 ITS-S の ITS アプリが受信 DENM の内容を要求する場合</td>
</tr>
</tbody>
</table>

N&T 層インタフェース（NF-SAP）における受け渡しデータの規定

表 3.1.2-10 に DEN 基本サービスー N&T 層間送受渡しデータを、表 3.1.2-11 に送信元 ITS-S における DEN 基本サービスから GeoNetworking/BTP への受渡しデータを示す。

表において DENM 目的地（DENM destination area）は MSG 中には存在しないが DENM 送信時に DENM を流布すべきエリアとして N&T 層によって使用される。円形、長方形、椭円形のいずれかで規定され、関連領域（RelevanceArea）をカバーする。
表 3.1.2-10 DEN 基本サービスーN&T 層間受渡しデータ

<table>
<thead>
<tr>
<th>カテゴリ</th>
<th>データ</th>
<th>必要データ</th>
<th>M/O</th>
<th>条件</th>
</tr>
</thead>
<tbody>
<tr>
<td>DEN 基本サービスーITS N&T 層</td>
<td>DENM {denm}</td>
<td>M</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>DENM 目的地 EN 302 931 (V1.1.1)で規定</td>
<td>M</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>DENM 反復のための送信間隔 msec 単位</td>
<td>O</td>
<td></td>
<td>ITS アプリが DENM 反復を要求する場合</td>
</tr>
<tr>
<td>ITS N&T 層ーDEN 基本サービス</td>
<td>受信 DENM {denm}</td>
<td>O</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

表 3.1.2-11 送信元 ITS-S における DEN 基本サービスから GeoNetworking/BTP への受渡しデータ

<table>
<thead>
<tr>
<th>カテゴリ</th>
<th>データ</th>
<th>必要データ</th>
<th>M/O</th>
<th>条件</th>
</tr>
</thead>
<tbody>
<tr>
<td>DEN 基本サービスーGeoNetworking/BTP</td>
<td>メッセージタイプ {denm.header.messageID}</td>
<td>M</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>BTP タイプ B (EN 302 636-5-1)</td>
<td>O</td>
<td></td>
<td>値が GN の管理情報ベース (MIB) 構成中に設定されていないか、または MIB での設定と異なる場合に適用</td>
</tr>
<tr>
<td></td>
<td>目的ポート EN 302 636-5-1 で規定</td>
<td>O</td>
<td></td>
<td>(同上)</td>
</tr>
<tr>
<td></td>
<td>目的ポート情報 (予約)</td>
<td>O</td>
<td></td>
<td>(同上)</td>
</tr>
<tr>
<td></td>
<td>GN パケット送信タイプ GeoBroadcast プロトコルが DENM 流布に使用されるものとする</td>
<td>O</td>
<td></td>
<td>(同上)</td>
</tr>
<tr>
<td>DENM のトラフィッククラス</td>
<td>EN 302 636-4-1 で規定</td>
<td>M</td>
<td></td>
<td></td>
</tr>
<tr>
<td>GN 最大パケット寿命</td>
<td>O (同上)</td>
<td>(同上)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>GN ホップ限界</td>
<td>O (同上)</td>
<td>(同上)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>長さ</td>
<td>DENM の長さ</td>
<td>M</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

③ DENM 流布

事象同定に関する要件

事象の同定に関する要件として以下が規定されている。

- **actionID**: 新 DENM 生成毎に新しく割り当て、送信元 ITS-S の ITS-S ID＋一連番号
 - 一連番号は検出イベント毎に割り当て、初めてイベントを検出するたびに増加
 - 一連番号は規定限界に達したとき 0 から再スタート
- **actionID** は、ITS-S が、異なる送信元 ITS-S から送信された DENM と、異なるイベントのために同じ送信元 ITS-S によって送信された DENM を区別するのを可能にする

DENM のトリガー・更新・反復・終了に関する要件

DENM のトリガー・更新・反復・終了に関する要件として以下が規定されている。

- **DENM トリガー**: DEN 基本サービスがアプリ要求 AppDENM_Trigger に対し新 DENM を生成
- **DENM 更新**: DENM トリガー後イベント進展を検出時にアプリ要求 AppDENM_update に対し更新 DENM を生成
- **DENM 反復**:

ITS アプリからの要求で起動し事前定義の送信間隔で反復
ITS アプリが送信間隔、イベント検知時刻、反復持続データを提供
上記 3 データのいずれかが提供されない場合 DENM 反復は実行せず

● DENM 終了:
 • DENM トリガーを要求した送信元 ITS-S：反復持続終了時に自動的に DENM 反復を停止。イベントの終了検出時にキャンセル DENM を生成。actionID 値は変更せず
 • DENM トリガーを要求していない送信元 ITS-S：否定 DENM を生成
 • 有効期間（ValidityDuration）をすぎた DENM は棄却。
 有効期間がアプリで与えられない場合はイベント検出から 600sec
 • イベント検知時刻はキャンセル DENM、否定 DENM ともイベント終了が検出された時刻

DENM 転送に関する要件
DENM 転送に関する要件として以下が規定されている。
● DENM 転送は ITS N&T 層かファシリティー層で実現してもよい
● 転送保持(KAF)機能（オプション）
 DEN 基本サービスか ITS アプリでトリガー。トリガーされると、下記すべての条件が満たされる限り、KAF は受信 DENM を格納
 • 受信 DENM が validityduration 有効期間内
 • ITS-S がイベントの関連領域内に位置
 • イベントは送信元 ITS-S によってキャンセルされていない
 • イベントはどんな送信元 ITS-S によっても否定されていない
● 転送のタイムアウト T_Forwarding
 • TD {（送信間隔×2）＋ランダム遅延(0-150 ms)｝≦有効期間
 →T_Forwarding=TD
 • TD {（送信間隔×2）＋ランダム遅延(0-150 ms)｝＞有効期間
 →T_Forwarding=validityduration
 • TransmissionInterval 送信間隔が受信 DENM に存在していない場合
 →T_Forwarding=無効

④ DENM の概要構成
7 章の DENM フォーマット仕様、Annex A の DENM の ASN.1 仕様より DENM の構成を分析し、以下にその概要構成を示した。
表 3.1.2-12 DENM の概要構成

<table>
<thead>
<tr>
<th>No</th>
<th>記述名 (EN)</th>
<th>記述名 (JN)</th>
<th>M/O</th>
<th>構成</th>
</tr>
</thead>
<tbody>
<tr>
<td>1DS</td>
<td>DecentralizedEnvironmentalNotificationMessage</td>
<td>デンムヘッダー</td>
<td>M</td>
<td>プロトコルバージョン、メッセージID、ステーションID</td>
</tr>
<tr>
<td>5DS</td>
<td>ManagementContainer</td>
<td>管理コンテナ</td>
<td>M</td>
<td>アクションID、イベント検出時刻、DENM生成時刻、DENM否定／キャンセル、イベント位置、関連箇所／交通方向、有効期間、送信間隔</td>
</tr>
<tr>
<td>2DF</td>
<td>SituationContainer</td>
<td>状況コンテナ</td>
<td>O</td>
<td>イベントの通知、方策とその精度、軌跡（最大8個のパス収録）、道路区分</td>
</tr>
<tr>
<td>3DF</td>
<td>LocationContainer</td>
<td>位置コンテナ</td>
<td>O</td>
<td>イベントの検出時刻、位置情報、関連距離、交通方向、有効期間、送信間隔</td>
</tr>
<tr>
<td>51DF</td>
<td>AlacarteContainer</td>
<td>アラカルトコンテナ</td>
<td>O</td>
<td></td>
</tr>
<tr>
<td>52DF</td>
<td>LaneNumber</td>
<td>車線番号</td>
<td>O</td>
<td></td>
</tr>
<tr>
<td>53DF</td>
<td>ImpactReductionContainer</td>
<td>衝突緩和コンテナ</td>
<td>O</td>
<td>車両の荷台高さ／縦位置、ピラー位置のリスト、質量／中心位置、ホイールベース、軸回半径、前輪車軸位置、速度等有状態、軌跡等要求</td>
</tr>
<tr>
<td>67DE</td>
<td>Temperature</td>
<td>温度</td>
<td>O</td>
<td></td>
</tr>
<tr>
<td>68DF</td>
<td>RoadWorksContainerExtended</td>
<td>道路工事コンテナ拡張</td>
<td>O</td>
<td>ライトバー・サイレン使用状態、車線閉鎖状態、制限速度、原因コード、推奨経路</td>
</tr>
<tr>
<td>90DE</td>
<td>PositioningSolutionType</td>
<td>位置標定タイプ</td>
<td>O</td>
<td></td>
</tr>
<tr>
<td>91DF</td>
<td>StationaryVehicleContainer</td>
<td>静止車両コンテナ</td>
<td>O</td>
<td>ステーションタイプ（車の種別）、静止時間、原因コード、危険物情報（危険物タイプやその他危険物関連情報）、乗客数、車両ID、動力タイプ</td>
</tr>
</tbody>
</table>

● 管理コンテナ：イベントの検出時刻や位置、DENM の送信、更新、転送、終了等を管理する主要情報を記述
● 状況コンテナ：検出イベントのタイプやその存在確立、リンクイベント（ex 事故に対する悪天候）など説明情報を記述
● 位置コンテナ：イベントの位置に関する参照情報（速度、方向、軌跡、イベントを検出した道路の区分）を記述
● アラカルトコンテナ：上記で説明されない ITS アプリの特定の情報を記述。アプリから提供される場合に記述
● 車線番号：イベント位置に対応する車線番号
● 衝突緩和コンテナ：衝突の可能性があるユースケースの場合、衝突緩和に関連する車両データを提供
● 温度：悪天候ユースケースで規定。異常天候状態時のイベント周辺の気温
● 道路工事コンテナ拡張：道路工事ユースケースで規定。工事ゾーンやそのでの規制、迂回路情報提供
● 位置検定タイプ：緊急車両接近、低速／静止車両ユースケースで規定。イベント位置推定に用いた位置検定方法を提供
● 静止車両コンテナ：静止車両ユースケースで規定。車両の静止の要因や静止時間などを提供

EN 版の DENM の概要について以下にまとめた。
● DENM は RHS、ICRW、LCRW アプリ（*注）の各安全ユースケースに対応する MSG である
● ただし DENM はユースケースに応じてコンテナを選ぶ形ではなく、アラカルトコンテナで全ての情報を SEQUENCE で記載する方式である
● 新 DENM での必須はヘッダー＋管理コンテナのみで他のコンテナはオプションだが、管理コンテナ中にはイベントの内容を示す情報はなく、少なくとも実際には状況コンテナが必要と思われる
● タイムスタンプとして DENM 生成時刻の他に EN 版ではイベント検出時刻を追加。絶対時刻単位でこの時刻をイベント評価の基準としている
共通データ辞書規格の分析

ETSI TS 102 894-2 : Intelligent Transport Systems (ITS);
Users and applications requirements;
Part 2: Applications and facilities layer common data dictionary

本規格は上述の CAM 基本サービスと DEN 基本サービスに使用される、メッセージ CAM/DENM に使用されるデータを定義したものである。

① 目次とスコープ

<table>
<thead>
<tr>
<th>目次</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 Scope 範囲</td>
</tr>
<tr>
<td>2 References 参照</td>
</tr>
<tr>
<td>3 Definitions and abbreviations 定義と略語</td>
</tr>
<tr>
<td>4 ITS data dictionary structure ITS データ辞書構造</td>
</tr>
<tr>
<td>4.1 Attributes for DE/DF identification DE/DF 識別のための属性</td>
</tr>
<tr>
<td>4.2 Attributes for DE/DF definition DE/DF 定義のための属性</td>
</tr>
<tr>
<td>Annex A (normative): Data type specifications</td>
</tr>
<tr>
<td>Annex B (normative): ASN.1 module of the common data dictionary</td>
</tr>
<tr>
<td>Annex C (informative): Bibliography</td>
</tr>
</tbody>
</table>

スコープ

- 現ドキュメントは ITS アプリとファシリティー層メッセージで共通的に使用される 1 セットのデータ要素（DE）(*1) とデータフレーム（DF）(*2) を定義する。
- 各データ要素は、記述名称、ASN.1 定義、データ定義、最小データ単位等データ要素の識別を可能にする属性のセットで定義される。
- 現ドキュメントは CAM 基本サービスと DEN 基本サービスによって使用されるデータ要素を取り扱う。
- 現ドキュメントはデータ要素のフォーマットや要件を規定しない。かかる規定は、対応するメッセージ規格でなされる。

② データ辞書の構造

各 DE/DF は以下の表 3.1.3-1 に示す 1 セットの属性によって定義される。
表 3.1.3-1 データ辞書における DE/DF の定義属性

<table>
<thead>
<tr>
<th>No</th>
<th>名称</th>
<th>内容</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Descriptive name</td>
<td>DE あるいは DF の記述名称。メッセージ仕様で使用されるものと同一でなければならない。また、共通データ辞書中でユニークでなければならない。他の ITS アプリやファシリティー層のコンポーネントで使用してもよい。</td>
</tr>
<tr>
<td>2</td>
<td>Identifier</td>
<td>DE あるいは DF のユニークな識別子を提供。Datatype＋（一連番号）一連番号は現規格では3桁</td>
</tr>
<tr>
<td>3</td>
<td>ASN.1 representation</td>
<td>DE あるいは DF の ASN.1 表現。ASN.1型名は記述名称と同一でなければならない</td>
</tr>
<tr>
<td>4</td>
<td>Definition</td>
<td>DE あるいは DF の定義とその解説を記述</td>
</tr>
<tr>
<td>5</td>
<td>Category</td>
<td>DE あるいは DF のカテゴリを示す。現在以下のカテゴリを定義・Vehicle information（車両情報）・GeoReference information（地理参照情報）・Road topology information（道路位相情報）・Traffic information（交通情報）・Infrastructure information（インフラ情報）・Personal information（個人情報）・Communication information（通信情報）・Other information（他の情報）：上記のいずれにも属さない DE/DF</td>
</tr>
<tr>
<td>6</td>
<td>Unit</td>
<td>データに適用される単位</td>
</tr>
<tr>
<td>7</td>
<td>Last modification date</td>
<td>DE/DF のために最新の変更がなされた yy-mm-dd 形式での日付</td>
</tr>
</tbody>
</table>

DE/DF の上記、定義属性によるデータ辞書は Annex A に記載されている。表 3.1.3-2 にデータ辞書 ETSI TS 102 894-2 に記載の DE/DF の一覧を示す。表に示すように、現データ辞書では 112 の DE/DF が定義されている。

表 3.1.3-2 データ辞書 ETSI TS 102 894-2 に記載の DE/DF 一覧

<table>
<thead>
<tr>
<th>項目</th>
<th>識別子</th>
<th>記述名称</th>
</tr>
</thead>
<tbody>
<tr>
<td>A.1</td>
<td>DataType_001</td>
<td>AccelerationConfidence</td>
</tr>
<tr>
<td>A.2</td>
<td>DataType_002</td>
<td>AccelerationControl</td>
</tr>
<tr>
<td>A.3</td>
<td>DataType_003</td>
<td>AccidentSubCauseCode</td>
</tr>
<tr>
<td>A.4</td>
<td>DataType_004</td>
<td>AdverseWeatherCondition-AdhesionSubCauseCode</td>
</tr>
<tr>
<td>A.5</td>
<td>DataType_005</td>
<td>AdverseWeatherCondition-ExtremeWeatherConditionSubCauseCode</td>
</tr>
<tr>
<td>A.6</td>
<td>DataType_006</td>
<td>AdverseWeatherCondition-PrecipitationSubCauseCode</td>
</tr>
<tr>
<td>A.7</td>
<td>DataType_007</td>
<td>AdverseWeatherCondition-VisibilitySubCauseCode</td>
</tr>
<tr>
<td>A.8</td>
<td>DataType_008</td>
<td>CauseCode</td>
</tr>
<tr>
<td>A.9</td>
<td>DataType_009</td>
<td>ClosedLanes</td>
</tr>
<tr>
<td>A.10</td>
<td>DataType_010</td>
<td>CauseCodeType</td>
</tr>
<tr>
<td>A.11</td>
<td>DataType_011</td>
<td>CollisionRiskSubCauseCode</td>
</tr>
<tr>
<td>A.12</td>
<td>DataType_012</td>
<td>Curvature</td>
</tr>
<tr>
<td>A.13</td>
<td>DataType_013</td>
<td>CurvatureConfidence</td>
</tr>
<tr>
<td>A.14</td>
<td>DataType_014</td>
<td>CurvatureCalculationMode</td>
</tr>
<tr>
<td>A.15</td>
<td>DataType_015</td>
<td>CurvatureValue</td>
</tr>
<tr>
<td>A.16</td>
<td>DataType_016</td>
<td>DangerousEndOfQueueSubCauseCode</td>
</tr>
<tr>
<td>A.17</td>
<td>DataType_017</td>
<td>DangerousGoodsBasic</td>
</tr>
<tr>
<td></td>
<td>DataType</td>
<td>Description</td>
</tr>
<tr>
<td>---</td>
<td>------------</td>
<td>--</td>
</tr>
<tr>
<td>A.18</td>
<td>DataType_018</td>
<td>DangerousGoodsExtended</td>
</tr>
<tr>
<td>A.19</td>
<td>DataType_019</td>
<td>DangerousSituationSubCauseCode</td>
</tr>
<tr>
<td>A.20</td>
<td>DataType_020</td>
<td>DeltaAltitude</td>
</tr>
<tr>
<td>A.21</td>
<td>DataType_021</td>
<td>DeltaLatitude</td>
</tr>
<tr>
<td>A.22</td>
<td>DataType_022</td>
<td>DeltaLongitude</td>
</tr>
<tr>
<td>A.23</td>
<td>DataType_023</td>
<td>DeltaReferencePosition</td>
</tr>
<tr>
<td>A.24</td>
<td>DataType_024</td>
<td>Heading</td>
</tr>
<tr>
<td>A.25</td>
<td>DataType_025</td>
<td>HeadingConfidence</td>
</tr>
<tr>
<td>A.26</td>
<td>DataType_026</td>
<td>HeadingValue</td>
</tr>
<tr>
<td>A.27</td>
<td>DataType_027</td>
<td>DriveDirection</td>
</tr>
<tr>
<td>A.28</td>
<td>DataType_028</td>
<td>DrivingLaneStatus</td>
</tr>
<tr>
<td>A.29</td>
<td>DataType_029</td>
<td>Altitude</td>
</tr>
<tr>
<td>A.30</td>
<td>DataType_030</td>
<td>AltitudeConfidence</td>
</tr>
<tr>
<td>A.31</td>
<td>DataType_031</td>
<td>AltitudeValue</td>
</tr>
<tr>
<td>A.32</td>
<td>DataType_032</td>
<td>EmbarkationStatus</td>
</tr>
<tr>
<td>A.33</td>
<td>DataType_033</td>
<td>EmergencyPriority</td>
</tr>
<tr>
<td>A.34</td>
<td>DataType_034</td>
<td>EmergencyVehicleApproachingSubCauseCode</td>
</tr>
<tr>
<td>A.35</td>
<td>DataType_035</td>
<td>EnergyStorageType</td>
</tr>
<tr>
<td>A.36</td>
<td>DataType_036</td>
<td>ExteriorLights</td>
</tr>
<tr>
<td>A.37</td>
<td>DataType_037</td>
<td>HardShoulderStatus</td>
</tr>
<tr>
<td>A.38</td>
<td>DataType_038</td>
<td>HazardousLocation-AnimalOnTheRoadSubCauseCode</td>
</tr>
<tr>
<td>A.39</td>
<td>DataType_039</td>
<td>HazardousLocation-DangerousCurveSubCauseCode</td>
</tr>
<tr>
<td>A.40</td>
<td>DataType_040</td>
<td>HazardousLocation-ObstacleOnTheRoadSubCauseCode</td>
</tr>
<tr>
<td>A.41</td>
<td>DataType_041</td>
<td>HazardousLocation-SurfaceConditionSubCauseCode</td>
</tr>
<tr>
<td>A.42</td>
<td>DataType_042</td>
<td>HeightLonCarr</td>
</tr>
<tr>
<td>A.43</td>
<td>DataType_043</td>
<td>HumanPresenceOnTheRoadSubCauseCode</td>
</tr>
<tr>
<td>A.44</td>
<td>DataType_044</td>
<td>HumanProblemSubCauseCode</td>
</tr>
<tr>
<td>A.45</td>
<td>DataType_045</td>
<td>InformationQuality</td>
</tr>
<tr>
<td>A.46</td>
<td>DataType_046</td>
<td>ItsPduHeader</td>
</tr>
<tr>
<td>A.47</td>
<td>DataType_047</td>
<td>LaneNumber</td>
</tr>
<tr>
<td>A.48</td>
<td>DataType_048</td>
<td>Latitude</td>
</tr>
<tr>
<td>A.49</td>
<td>DataType_049</td>
<td>LateralAcceleration</td>
</tr>
<tr>
<td>A.50</td>
<td>DataType_050</td>
<td>LateralAccelerationValue</td>
</tr>
<tr>
<td>A.51</td>
<td>DataType_051</td>
<td>LightBarSirenInUse</td>
</tr>
<tr>
<td>A.52</td>
<td>DataType_052</td>
<td>Longitude</td>
</tr>
<tr>
<td>A.53</td>
<td>DataType_053</td>
<td>LongitudinalAcceleration</td>
</tr>
<tr>
<td>A.54</td>
<td>DataType_054</td>
<td>LongitudinalAccelerationValue</td>
</tr>
<tr>
<td>A.55</td>
<td>DataType_055</td>
<td>TrafficRule</td>
</tr>
<tr>
<td>A.56</td>
<td>DataType_056</td>
<td>PathDeltaTime</td>
</tr>
<tr>
<td>A.57</td>
<td>DataType_057</td>
<td>PathHistory</td>
</tr>
<tr>
<td>A.58</td>
<td>DataType_058</td>
<td>PathPoint</td>
</tr>
<tr>
<td>A.59</td>
<td>DataType_059</td>
<td>PerformanceClass</td>
</tr>
<tr>
<td>A.60</td>
<td>DataType_060</td>
<td>PosCentMass</td>
</tr>
<tr>
<td>A.61</td>
<td>DataType_061</td>
<td>PosConfidenceEllipse</td>
</tr>
<tr>
<td>A.62</td>
<td>DataType_062</td>
<td>PositioningSolutionType</td>
</tr>
<tr>
<td>A.63</td>
<td>DataType_063</td>
<td>PositionOfOccupants</td>
</tr>
<tr>
<td>A.64</td>
<td>DataType_064</td>
<td>PosFrontAx</td>
</tr>
<tr>
<td>A.65</td>
<td>DataType_065</td>
<td>PosLonCarr</td>
</tr>
<tr>
<td>A.66</td>
<td>DataType_066</td>
<td>PosPillar</td>
</tr>
<tr>
<td>A.67</td>
<td>DataType_067</td>
<td>PostCrashSubCauseCode</td>
</tr>
<tr>
<td>A.68</td>
<td>DataType_068</td>
<td>PtActivation</td>
</tr>
<tr>
<td>A.69</td>
<td>DataType_069</td>
<td>PtActivationData</td>
</tr>
<tr>
<td>A.70</td>
<td>DataType_070</td>
<td>PtActivationType</td>
</tr>
<tr>
<td>A.71</td>
<td>DataType_071</td>
<td>ReferencePosition</td>
</tr>
<tr>
<td>A.72</td>
<td>DataType_072</td>
<td>RequestResponseIndication</td>
</tr>
<tr>
<td>A.73</td>
<td>DataType_073</td>
<td>RescueAndRecoveryWorkInProgressSubCauseCode</td>
</tr>
<tr>
<td>A.74</td>
<td>DataType_074</td>
<td>RoadType</td>
</tr>
<tr>
<td>A.75</td>
<td>DataType_075</td>
<td>RoadworkSubCauseCode</td>
</tr>
<tr>
<td>A.76</td>
<td>DataType_076</td>
<td>SemiAxisLength</td>
</tr>
<tr>
<td>A.77</td>
<td>DataType_077</td>
<td>SignalViolationSubCauseCode</td>
</tr>
<tr>
<td>A.78</td>
<td>DataType_078</td>
<td>SlowVehicleSubCauseCode</td>
</tr>
<tr>
<td>A.79</td>
<td>DataType_079</td>
<td>SpecialTransportType</td>
</tr>
<tr>
<td>A.80</td>
<td>DataType_080</td>
<td>Speed</td>
</tr>
<tr>
<td>A.81</td>
<td>DataType_081</td>
<td>SpeedConfidence</td>
</tr>
<tr>
<td>A.82</td>
<td>DataType_082</td>
<td>SpeedLimit</td>
</tr>
<tr>
<td>A.83</td>
<td>DataType_083</td>
<td>SpeedValue</td>
</tr>
<tr>
<td>A.84</td>
<td>DataType_084</td>
<td>StationarySince</td>
</tr>
<tr>
<td>A.85</td>
<td>DataType_085</td>
<td>StationaryVehicleSubCauseCode</td>
</tr>
<tr>
<td>A.86</td>
<td>DataType_086</td>
<td>StationID</td>
</tr>
<tr>
<td>A.87</td>
<td>DataType_087</td>
<td>StationType</td>
</tr>
<tr>
<td>A.88</td>
<td>DataType_088</td>
<td>SteeringWheelAngle</td>
</tr>
<tr>
<td>A.89</td>
<td>DataType_089</td>
<td>SteeringWheelAngleConfidence</td>
</tr>
<tr>
<td>A.90</td>
<td>DataType_090</td>
<td>SteeringWheelAngleValue</td>
</tr>
<tr>
<td>A.91</td>
<td>DataType_091</td>
<td>SubCauseCodeType</td>
</tr>
<tr>
<td>A.92</td>
<td>DataType_092</td>
<td>TimestampIts</td>
</tr>
<tr>
<td>A.93</td>
<td>DataType_093</td>
<td>Temperature</td>
</tr>
<tr>
<td>A.94</td>
<td>DataType_094</td>
<td>TrafficConditionSubCauseCode</td>
</tr>
<tr>
<td>A.95</td>
<td>DataType_095</td>
<td>TurningRadius</td>
</tr>
<tr>
<td>A.96</td>
<td>DataType_096</td>
<td>VDS</td>
</tr>
<tr>
<td>A.97</td>
<td>DataType_097</td>
<td>VehicleBreakdownSubCauseCode</td>
</tr>
<tr>
<td>A.98</td>
<td>DataType_098</td>
<td>VehicleIdentification</td>
</tr>
<tr>
<td>A.99</td>
<td>DataType_099</td>
<td>VehicleLength</td>
</tr>
<tr>
<td>A.100</td>
<td>DataType_100</td>
<td>VehicleLengthConfidenceIndication</td>
</tr>
<tr>
<td>A.101</td>
<td>DataType_101</td>
<td>VehicleLengthValue</td>
</tr>
<tr>
<td>A.102</td>
<td>DataType_102</td>
<td>VehicleMass</td>
</tr>
<tr>
<td>A.103</td>
<td>DataType_103</td>
<td>VehicleRole</td>
</tr>
<tr>
<td>A.104</td>
<td>DataType_104</td>
<td>VehicleWidth</td>
</tr>
<tr>
<td>A.105</td>
<td>DataType_105</td>
<td>VerticalAcceleration</td>
</tr>
<tr>
<td>A.106</td>
<td>DataType_106</td>
<td>VerticalAccelerationValue</td>
</tr>
<tr>
<td>A.107</td>
<td>DataType_107</td>
<td>WheelBaseVehicle</td>
</tr>
<tr>
<td>A.108</td>
<td>DataType_108</td>
<td>WMInumber</td>
</tr>
<tr>
<td>A.109</td>
<td>DataType_109</td>
<td>WrongWayDrivingSubCauseCode</td>
</tr>
<tr>
<td>A.110</td>
<td>DataType_110</td>
<td>YawRate</td>
</tr>
<tr>
<td>A.111</td>
<td>DataType_111</td>
<td>YawRateConfidence</td>
</tr>
<tr>
<td>A.112</td>
<td>DataType_112</td>
<td>YawRateValue</td>
</tr>
</tbody>
</table>

*1: DE（data element）：本規格では「ただ一つのデータを含むデータタイプ」と定義

*2: DF（data frame）：本規格では「事前に定義された順に1つ以上のデータ要素を含むデータタイプ」と定義
3.2 C-ITS のアプリ整理案、メッセージ案、データ辞書案の検証

3.2.1 アプリ整理案の検証

C-ITS のメッセージ案、データ辞書案の対象となる C-ITS の想定アプリは日米欧の実証実験プロジェクトや実用化サービスのアプリをベースに 2010 年度に 71 件類型化ユースケースからなる 37 個の想定アプリとしてまとめ、アプリ定義案を作成した。このアプリ定義案は、2011 年度に ITS 世界会議東京の予定ユースケースや欧米の FOT プロジェクトのユースケースをもとに見直して、5 つの類型化ユースケースを追加して改訂した。（*1）

今年度、欧州の COMeSafety2 において欧州における想定アプリをまとめた C-ITS サービスカタログ（*2）が発行されたため、日本自動車研究所でまとめた上記想定アプリが上記カタログにおけるユースケースを説明できるかを検証した。

表 3.2.1-1 に COMeSafety2 の C-ITS サービスカタログにおけるアプリ、ユースケースの名称一覧を、表 3.2.1-2 にその内容概要を示した。

C-ITS サービスカタログにおける各ユースケース（以下 COMeSafety2 ユースケース）と日本自動車研究所でまとめた想定アプリの類型化ユースケースを比較し、類型化ユースケース上に COMeSafety2 ユースケースをマッピングした結果を表 3.2.1-3、表 3.2.1-4 に示した。表 3.2.1-4 では COMeSafety2 ユースケース名を欧州ユースケース例の欄に赤字下線で「ユースケース名：③」としてマッピングして追加した。また、この結果を表 3.2.1-3 にまとめ、類型化ユースケース上に COMeSafety2 ユースケースがマッピングされた場合、他の欧州ユースケースがない新規マッピングでは●を、既に他の欧州ユースケースが存在する場合のマッピングでは○を赤字太字下線で示した。

表 3.2.1-3、表 3.2.1-4 に示すように、全ての COMeSafety2 ユースケースは日本自動車研究所でまとめた想定アプリの類型化ユースケースで説明がつき、かかる想定アプリの妥当性が検証された。

*1: 改訂アプリ定義案は「ITS 車載システムの標準化に関する調査研究報告書 平成 24 年 3 月」の「付録 1 協調システムのアプリケーション定義（案） 改訂 1 版」参照
*2: C-ITS SERVICES CATALOGUE Ver0.1, COMeSafety2
<table>
<thead>
<tr>
<th>Application</th>
<th>Usecase</th>
</tr>
</thead>
</table>
| ROAD SAFETY SERVICES
道路安全サービス | Co-operative Awareness 達調調意要起 |
| | Emergency Vehicle Approaching 緊急車両接近 |
| | Slow Vehicle 低速車両 |
| | Stationary Vehicle 靜止車両 |
| | Emergency Electronic Brake Lights 緊急電子ブレーキ灯 |
| | Wrong Way Driving 通行違反 |
| | Adverse Weather Condition 赤天候態 |
| | Hazardous Location 危険箇所 |
| | Traffic Condition 交通状態 |
| | Road Work 道路工事 |
| | Human Presence on the Road 道路上歩行者 |
| | Signal Violation 信号違反 |
| | Collision Avoidance 衝突回避 |
| | Longitudinal Collision Risk Warning 縦方向衝突警報 |
| | Intersection Collision Risk Warning 交差点衝突警報 |
| | Dangerous Lane Change or Motorcycle Approaching 車線変更・二輪車接近支援 |
| | Secondary and Tertiary road safety 第2・第3的道路安全 |
| | Pre-crash Mitigation Support プリクラッシュ緩和サポート |
| SUSTAINABILITY SERVICES
持続性サービス | Collecting Traffic Information 交通情報収集 |
| | In-Vehicle Signage 車内標識 |
| | Contextual Speed 制限速度 |
| | Traffic Information & Recommended Itinerary 交通情報と推奨旅程 |
| | Green Light Optimal Speed Advisory (GLOSA) 緑信号最適速度推奨 |
| | Lane Use Optimization レーン利用最適化 |
| | Controlled Access to Protected Areas 保護地域への制御アクセス |
| | Safe Parking Management for Trucks トラック安全駐車管理 |
| | Co-operative Stolen vehicle Location & Interception 協調型盗難車両位置標定と捕捉 |
| | Co-operative Action Support – Electronic Hitchhiking & Help Taxi 協調型支援アクション– 電子ヒッチハイクとヘルプタクシー |
| | Co-operative Support Action – Help me! 協調型支援アクション–ヘルプミー! |
| | Multimodality POI Notification and Transit Support マルチモーダルPOI通知とトランジットサポート |
| MOBILITY / COMFORT SERVICES
移動/快適サービス | Parking Notification and Service Support 駐車通知・サービス支援 |
| | Energy Station Notification and Service Support エネルギーステーション通知・サービス支援 |
| | Vehicle Maintenance Station and Service Support 車両メンテナンスステーションとサービス支援 |
| | Rest Area Notification and Service Support 休息所通知・サービス支援 |
| | Toll Collect Notification and Service Support 料金受付通知・サービス支援 |
| | Mobility Commerce Notification and Service Support 移動コマース通知・サービス支援 |
| | Promotion of the National Patrimony 国有財産のプロモーション |
| | Local Event Notification and Service Support ローカルイベント通知・サービス支援 |
| | Services to Mobile Communities / Fleet Management モバイル共同体/フリート管理サービス |
| | Vehicle Maintenance 車両メンテナンス |
| OTHER SERVICES
他のサービス | Services to Insurances and Financial Organizations 保険・ファイナンシャルサービス |
<p>| | Instantaneous Exchange of Multimedia 即時マルチメディア交換 |
| | Visitor Internet Access ビジターネットアクセス |</p>
<table>
<thead>
<tr>
<th>Application</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Conformity Assessment</td>
<td>適用性評価</td>
</tr>
<tr>
<td>Performance Verification</td>
<td>性能検証</td>
</tr>
<tr>
<td>Technical Support</td>
<td>技術サポート</td>
</tr>
<tr>
<td>Other Services</td>
<td>その他のサービス</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Type of Services</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mobility Services</td>
<td>移動サービス</td>
</tr>
<tr>
<td>Comfort Services</td>
<td>快適サービス</td>
</tr>
<tr>
<td>Sustainability Services</td>
<td>持続可能性サービス</td>
</tr>
<tr>
<td>Road Safety</td>
<td>道路安全</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>System</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>G5</td>
<td>CAM/DENM</td>
</tr>
<tr>
<td>UDP/IPv6</td>
<td>基本的な通信プラクティス</td>
</tr>
</tbody>
</table>

Table 3.2.1-2 COMeSafety2のC-ITS サービスカテゴリにおけるアプリ、ユースケースの内容概要

<table>
<thead>
<tr>
<th>序号</th>
<th>应用</th>
<th>概要</th>
<th>適用条件</th>
<th>順位</th>
<th>メタデータ</th>
<th>サービスタイプ</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Emergency Vehicle Information Sharing</td>
<td>緊急車両情報共有</td>
<td>車両の緊急状態を共有する</td>
<td>1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>Traffic Information Sharing for Moving Vehicles</td>
<td>移動車両の交通情報共有</td>
<td>移動中の交通状態を共有する</td>
<td>2</td>
<td></td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>Cooperative Pedestrian Support</td>
<td>協力型歩行者支援</td>
<td>歩行者の安全を支援する</td>
<td>3</td>
<td></td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>Vehicle-to-Vehicle Communication</td>
<td>車両間コミュニケーション</td>
<td>車両間での情報交換を可能にする</td>
<td>4</td>
<td></td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>Fleet Management</td>
<td>フレット管理</td>
<td>フレットの効率的な管理を可能にする</td>
<td>5</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

※ 詳細は表3.2.1-2 COMeSafety2のC-ITS サービスカテゴリにおけるアプリ、ユースケースの内容概要を参照。
<table>
<thead>
<tr>
<th>アプリ種別</th>
<th>No</th>
<th>アプリ名称</th>
<th>類型化ユースケース (UC)</th>
<th>個別 UC</th>
</tr>
</thead>
<tbody>
<tr>
<td>進行経路前方支援</td>
<td>1</td>
<td>追突防止支援</td>
<td>停止・低速車衝突防止支援</td>
<td>○ ○ ○</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>滞在車衝突防止支援</td>
<td>○ ○ ○</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>落下物衝突防止支援</td>
<td>○</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>走行中追突防止支援</td>
<td>○ ○ ○</td>
</tr>
<tr>
<td>2</td>
<td>危険箇所走行支援</td>
<td>カーブ進入危険防止支援</td>
<td>○ ○ ○</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>危険箇所情報提供</td>
<td>○ ○ ○</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>路面状態・気象情報提供支援</td>
<td>路面状態・気象情報提供支援</td>
<td>○ ○ ○</td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>走行規制箇所走行支援</td>
<td>工事箇所警報</td>
<td>○ ○ ○</td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>規制情報提供支援</td>
<td>一方通行違反警報</td>
<td>○ ○ ○</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>速度超過時支援</td>
<td>○ ○ ○</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>一時停止規制見落とし防止支援</td>
<td>○ ○ ○</td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>協調型追従走行支援</td>
<td>緊急電子ブレーキ灯</td>
<td>○ ○</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>協調型ACC</td>
<td>○ ○ ○</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>高速道隊列走行</td>
<td>○ ○ ○</td>
<td></td>
</tr>
<tr>
<td>7</td>
<td>協調型視認性支援</td>
<td>協調型防眩</td>
<td>○ ○</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>協調型AFS</td>
<td>○ ○</td>
<td></td>
</tr>
<tr>
<td>交通弱者支援</td>
<td>8</td>
<td>交差点等支援</td>
<td>右折時衝突防止支援</td>
<td>○ ○ ○</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>左折時衝突防止支援</td>
<td>○ ○ ○</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>出会い頭衝突防止支援 (優先道路)</td>
<td>○ ○</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>出会い頭衝突防止支援 (非優先道路)</td>
<td>○</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>ブリクラッシュ検知警報</td>
<td>○ ○</td>
</tr>
<tr>
<td>9</td>
<td>信号情報提供支援</td>
<td>信号見落とし防止支援</td>
<td>○ ○ ○</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>グリーンウェーブ走行支援</td>
<td>○ ○</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>減速・停止時エコ運転支援</td>
<td>○</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>発進時エコ運転支援</td>
<td>○</td>
</tr>
<tr>
<td>10</td>
<td>交通弱者支援</td>
<td>歩行者等横断見落とし防止支援</td>
<td>○ ○ ○</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>死角歩行者等衝突防止支援</td>
<td>○ ○ ○</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>歩車協調歩行者等衝突防止支援</td>
<td>○</td>
</tr>
<tr>
<td>合分流時等支援</td>
<td>11</td>
<td>合流支援</td>
<td>合流支援</td>
<td>○ ○ ○</td>
</tr>
<tr>
<td>12</td>
<td>車線変更・追越時支援</td>
<td>車線変更・追越時支援</td>
<td>○ ○ ○</td>
<td></td>
</tr>
<tr>
<td>緊急時支援</td>
<td>13</td>
<td>緊急通報支援</td>
<td>安全機能異常時警報</td>
<td>○ ○ ○</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>SOSサービス</td>
<td>○ ○ ○</td>
</tr>
<tr>
<td>14</td>
<td>緊急車両対応支援</td>
<td>緊急車両接近時支援</td>
<td>○ ○ ○</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>緊急車両通行支援</td>
<td>○ ○ ○</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>緊急車両優先信号</td>
<td>○ ○ ○</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>緊急車両ビデオリレー</td>
<td>○ ○ ○</td>
</tr>
<tr>
<td>15</td>
<td>災害・地震情報提供</td>
<td>災害・地震情報提供</td>
<td>○</td>
<td></td>
</tr>
</tbody>
</table>

原版内容：

表 3.2.1-3 類型化ユースケース上への COMeSafety2 ユースケースマッピング結果（概要）
表 3.2.1-3 類型化ユースケース上への COMeSafety2 ユースケースマッピング結果（概要）；続き

<table>
<thead>
<tr>
<th>アプリ種別</th>
<th>No</th>
<th>アプリ名称</th>
<th>類型化ユースケース (UC)</th>
<th>個別 UC</th>
</tr>
</thead>
<tbody>
<tr>
<td>運転支援</td>
<td>16</td>
<td>交通関連情報提供</td>
<td>運転支援、交通関連情報提供</td>
<td>日</td>
</tr>
<tr>
<td></td>
<td></td>
<td>気象、路面情報提供</td>
<td>特殊車両情報提供</td>
<td>欧</td>
</tr>
<tr>
<td></td>
<td></td>
<td>公共交通機関情報提供</td>
<td></td>
<td>米</td>
</tr>
<tr>
<td></td>
<td>17</td>
<td>電子標識</td>
<td>電子標識</td>
<td>日</td>
</tr>
<tr>
<td></td>
<td>18</td>
<td>経路探索・経路案内</td>
<td>経路探索・経路案内</td>
<td>欧</td>
</tr>
<tr>
<td></td>
<td>19</td>
<td>駐車場・SS 情報提供</td>
<td>駐車場・SS 情報提供</td>
<td></td>
</tr>
<tr>
<td></td>
<td>20</td>
<td>運転診断・運転アドバイザ</td>
<td>運転診断・運転アドバイザ</td>
<td></td>
</tr>
<tr>
<td></td>
<td>21</td>
<td>リモートメンテナンス</td>
<td>リモートメンテナンス</td>
<td></td>
</tr>
<tr>
<td></td>
<td>22</td>
<td>ロードアシスト</td>
<td>ロードアシスト</td>
<td></td>
</tr>
<tr>
<td>予約・決済支援</td>
<td>23</td>
<td>道路課金支援</td>
<td>ETC/EFC</td>
<td></td>
</tr>
<tr>
<td></td>
<td>24</td>
<td>電子予約・決済支援</td>
<td>電子予約・決済支援</td>
<td></td>
</tr>
<tr>
<td>各種管理支援</td>
<td>25</td>
<td>施設入退場支援</td>
<td>駐車場入退場支援</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>特定施設入退場支援</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>26</td>
<td>ホーム機器連携</td>
<td>ホーム機器連携</td>
<td></td>
</tr>
<tr>
<td></td>
<td>27</td>
<td>盗難車情報提供</td>
<td>盗難車情報提供</td>
<td></td>
</tr>
<tr>
<td></td>
<td>28</td>
<td>道路交通管理支援</td>
<td>道路交通管理支援</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>交差点管理支援</td>
<td>車線管理支援</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>制限通行警告・迂回路通知</td>
<td>車両／路側機データ校正</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>路車間での交通最適化</td>
<td>高度合流管理</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>高度交通流管理</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>29</td>
<td>車両データ収集支援</td>
<td>車両データ収集支援</td>
<td></td>
</tr>
<tr>
<td></td>
<td>30</td>
<td>公共交通支援</td>
<td>公共交通支援</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>公共車両信号優先</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>公共車両データ転送</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>公共車両給油</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>公共交通支援用データダウンロード</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>31</td>
<td>レンタカー管理支援</td>
<td>レンタカー管理支援</td>
<td></td>
</tr>
<tr>
<td></td>
<td>32</td>
<td>商用車管理</td>
<td>商用車管理</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>商用車運行管理</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>商用車物流管理</td>
<td></td>
<td></td>
</tr>
<tr>
<td>情報提供</td>
<td>33</td>
<td>メッセージ交換</td>
<td>メッセージ交換</td>
<td></td>
</tr>
<tr>
<td></td>
<td>34</td>
<td>地域情報提供</td>
<td>地域情報提供</td>
<td></td>
</tr>
<tr>
<td></td>
<td>35</td>
<td>ダウンロード・更新</td>
<td>ダウンロード・更新</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>地図ダウンロード・更新</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>メディアダウンロード</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>車両ソフト／データ配信・更新</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>36</td>
<td>広告・ニュース配信</td>
<td>広告・ニュース配信</td>
<td></td>
</tr>
<tr>
<td></td>
<td>37</td>
<td>インターネット接続</td>
<td>インターネット接続</td>
<td></td>
</tr>
</tbody>
</table>

－86－
<table>
<thead>
<tr>
<th>クラス</th>
<th>アプリ種別</th>
<th>No.</th>
<th>アプリ名称</th>
<th>類型化ユースケース</th>
<th>例</th>
<th>分類</th>
<th>ユースケース例</th>
</tr>
</thead>
<tbody>
<tr>
<td>交通管理支援</td>
<td>合流支援</td>
<td>10</td>
<td>交通弱者衝突防止支援</td>
<td>安全</td>
<td>交通弱者衝突防止支援</td>
<td>①</td>
<td></td>
</tr>
<tr>
<td>交通管理支援</td>
<td>進行経路支援</td>
<td>11</td>
<td>合流支援</td>
<td>安全</td>
<td>Merging assistance (合流支援情報提供)</td>
<td>①, ②</td>
<td></td>
</tr>
<tr>
<td>交通管理支援</td>
<td></td>
<td>12</td>
<td>災害・地震情報提供</td>
<td>安全</td>
<td>安全運転支援:災害情報</td>
<td>①</td>
<td></td>
</tr>
<tr>
<td>交通管理支援</td>
<td>携帯型追従走行支援</td>
<td>13</td>
<td>走行規制箇所走行支援</td>
<td>安全</td>
<td>Providing information on conditions ahead (前方状況情報提供)</td>
<td>①</td>
<td></td>
</tr>
<tr>
<td>交通管理支援</td>
<td></td>
<td>14</td>
<td>緊急車両対応支援</td>
<td>安全</td>
<td>緊急車両優先信号</td>
<td>①, ②, ③</td>
<td></td>
</tr>
<tr>
<td>交通管理支援</td>
<td></td>
<td>15</td>
<td>災害・地震情報提供</td>
<td>安全</td>
<td>安全運転支援:災害情報</td>
<td>①</td>
<td></td>
</tr>
<tr>
<td>交通管理支援</td>
<td>携帯型追従走行支援</td>
<td>16</td>
<td>安全の提供支援</td>
<td>安全</td>
<td>安全運転支援</td>
<td>①, ②, ③</td>
<td></td>
</tr>
<tr>
<td>交通管理支援</td>
<td></td>
<td>17</td>
<td>緊急車両接近時支援</td>
<td>安全</td>
<td>Emergency Vehicles Information (緊急車両情報提供)</td>
<td>③, ④</td>
<td></td>
</tr>
<tr>
<td>交通管理支援</td>
<td></td>
<td>18</td>
<td>緊急車両通行支援</td>
<td>安全</td>
<td>SOS service</td>
<td>①, ②, eCall</td>
<td>④</td>
</tr>
<tr>
<td>交通管理支援</td>
<td></td>
<td>19</td>
<td>歩車協調歩行者等衝突防止支援</td>
<td>安全</td>
<td>Adaptive Headlight Aiming (協調型AFS)</td>
<td>①, ②</td>
<td></td>
</tr>
<tr>
<td>交通管理支援</td>
<td></td>
<td>20</td>
<td>速度超過時支援</td>
<td>安全, 効率・環境</td>
<td>Pre-crash sensing warning (プリクラッシュ検知警報)</td>
<td>①, ②</td>
<td></td>
</tr>
<tr>
<td>交通管理支援</td>
<td></td>
<td>21</td>
<td>緊急電子ブレーキ灯</td>
<td>安全</td>
<td>Emergency Vehicle Signal Preemption (緊急車両優先信号)</td>
<td>①, ②, ③</td>
<td></td>
</tr>
<tr>
<td>交通管理支援</td>
<td></td>
<td>22</td>
<td>緑のウェーブ走行支援</td>
<td>効率・環境</td>
<td>Traffic light optimal speed advisory (グリーンウェーブ走行支援)</td>
<td>④</td>
<td></td>
</tr>
<tr>
<td>交通管理支援</td>
<td></td>
<td>23</td>
<td>一時停止規制見落とし防止支援</td>
<td>安全</td>
<td>Stop Sign Recognition Enhancement (一時停止規制見落とし防止支援)</td>
<td>①</td>
<td></td>
</tr>
<tr>
<td>交通管理支援</td>
<td></td>
<td>24</td>
<td>歩行者等横断見落とし防止支援</td>
<td>安全</td>
<td>Crossing Pedestrians Recognition Enhancement (歩行者横断事故防止)</td>
<td>⑤</td>
<td></td>
</tr>
<tr>
<td>交通管理支援</td>
<td></td>
<td>25</td>
<td>発進時エコ運転支援</td>
<td>効率・環境</td>
<td>Early departure support (発進遅れ防止支援)</td>
<td>④</td>
<td></td>
</tr>
<tr>
<td>交通管理支援</td>
<td></td>
<td>26</td>
<td>減速・停止時エコ運転支援</td>
<td>効率・環境</td>
<td>Idling stop support (アイドリングストップ支援)</td>
<td>④</td>
<td></td>
</tr>
<tr>
<td>交通管理支援</td>
<td></td>
<td>27</td>
<td>プリクラッシュ検知警報</td>
<td>安全</td>
<td>Pre-crash sensing warning (プリクラッシュ検知警報)</td>
<td>①, ②</td>
<td></td>
</tr>
<tr>
<td>交通管理支援</td>
<td></td>
<td>28</td>
<td>出会い頭衝突防止支援 (非優先道路)</td>
<td>安全</td>
<td>Crossing Collision Prevention (出会い頭衝突事故防止)</td>
<td>②, ④</td>
<td></td>
</tr>
<tr>
<td>交通管理支援</td>
<td></td>
<td>29</td>
<td>信号見落とし防止支援</td>
<td>安全</td>
<td>Signal Recognition Enhancement (信号見落とし防止)</td>
<td>②, ④</td>
<td></td>
</tr>
<tr>
<td>交通管理支援</td>
<td></td>
<td>30</td>
<td>涇滞末尾衝突防止支援</td>
<td>安全</td>
<td>Providing information on obstacles ahead (前方障害物情報提供)</td>
<td>①</td>
<td></td>
</tr>
<tr>
<td>交通管理支援</td>
<td></td>
<td>31</td>
<td>渋滞・危険箇所情報提供</td>
<td>安全</td>
<td>涇滞・危険箇所情報提供</td>
<td>④</td>
<td></td>
</tr>
<tr>
<td>交通管理支援</td>
<td></td>
<td>32</td>
<td>停止・低速車衝突防止支援</td>
<td>安全</td>
<td>Providing information on obstacles ahead (前方障害物情報提供)</td>
<td>①</td>
<td></td>
</tr>
<tr>
<td>交通管理支援</td>
<td></td>
<td>33</td>
<td>歩行者等横断見落とし防止支援</td>
<td>安全</td>
<td>Crossing Pedestrians Recognition Enhancement (歩行者横断事故防止)</td>
<td>④</td>
<td></td>
</tr>
<tr>
<td>交通管理支援</td>
<td>携帯型追従走行支援</td>
<td>34</td>
<td>②④, ③④</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>交通管理支援</td>
<td></td>
<td>35</td>
<td>戸絶頭衝突防止支援</td>
<td>安全</td>
<td>Crossing Collision Prevention (出会い頭衝突事故防止)</td>
<td>②</td>
<td></td>
</tr>
<tr>
<td>交通管理支援</td>
<td>携帯型追従走行支援</td>
<td>36</td>
<td>②④, ③④</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>交通管理支援</td>
<td></td>
<td>37</td>
<td>信号見落とし防止支援</td>
<td>安全</td>
<td>Signal Recognition Enhancement (信号見落とし防止)</td>
<td>②, ④</td>
<td></td>
</tr>
<tr>
<td>交通管理支援</td>
<td></td>
<td>38</td>
<td>安全機能異常時警報</td>
<td>安全</td>
<td>Safety function out of normal condition warning (安全機能異常時警報)</td>
<td>①</td>
<td></td>
</tr>
<tr>
<td>交通管理支援</td>
<td></td>
<td>39</td>
<td>緊急車両接近時支援</td>
<td>安全</td>
<td>Emergency Vehicles Information (緊急車両情報提供)</td>
<td>③, ④</td>
<td></td>
</tr>
<tr>
<td>交通管理支援</td>
<td></td>
<td>40</td>
<td>緊急電子ブレーキ灯</td>
<td>安全</td>
<td>Emergency Vehicle Signal Preemption (緊急車両優先信号)</td>
<td>①, ②, ③</td>
<td></td>
</tr>
<tr>
<td>交通管理支援</td>
<td></td>
<td>41</td>
<td>緑のウェーブ走行支援</td>
<td>効率・環境</td>
<td>Traffic light optimal speed advisory (グリーンウェーブ走行支援)</td>
<td>④</td>
<td></td>
</tr>
<tr>
<td>交通管理支援</td>
<td></td>
<td>42</td>
<td>一時停止規制見落とし防止支援</td>
<td>安全</td>
<td>Stop Sign Recognition Enhancement (一時停止規制見落とし防止支援)</td>
<td>①</td>
<td></td>
</tr>
<tr>
<td>交通管理支援</td>
<td></td>
<td>43</td>
<td>歩行者等横断見落とし防止支援</td>
<td>安全</td>
<td>Crossing Pedestrians Recognition Enhancement (歩行者横断事故防止)</td>
<td>⑤</td>
<td></td>
</tr>
<tr>
<td>交通管理支援</td>
<td></td>
<td>44</td>
<td>発進時エコ運転支援</td>
<td>効率・環境</td>
<td>Early departure support (発進遅れ防止支援)</td>
<td>④</td>
<td></td>
</tr>
<tr>
<td>交通管理支援</td>
<td></td>
<td>45</td>
<td>減速・停止時エコ運転支援</td>
<td>効率・環境</td>
<td>Idling stop support (アイドリングストップ支援)</td>
<td>④</td>
<td></td>
</tr>
<tr>
<td>交通管理支援</td>
<td></td>
<td>46</td>
<td>プリクラッシュ検知警報</td>
<td>安全</td>
<td>Pre-crash sensing warning (プリクラッシュ検知警報)</td>
<td>①, ②</td>
<td></td>
</tr>
<tr>
<td>交通管理支援</td>
<td></td>
<td>47</td>
<td>出会い頭衝突防止支援 (優先道路)</td>
<td>安全</td>
<td>Crossing Collision Prevention (出会い頭衝突事故防止)</td>
<td>②</td>
<td></td>
</tr>
<tr>
<td>交通管理支援</td>
<td>携帯型追従走行支援</td>
<td>48</td>
<td>②④, ③④</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>交通管理支援</td>
<td></td>
<td>49</td>
<td>沖突事故防止</td>
<td>安全</td>
<td>Regulatory/contextual speed limits notification (規制違反防止)</td>
<td>②</td>
<td></td>
</tr>
<tr>
<td>交通管理支援</td>
<td></td>
<td>50</td>
<td>湯滞・危険箇所情報提供, 路上作業中表示</td>
<td>安全</td>
<td>湯滞・危険箇所情報提供, 路上作業中表示</td>
<td>④</td>
<td></td>
</tr>
<tr>
<td>交通管理支援</td>
<td>携帯型追従走行支援</td>
<td>51</td>
<td>②④, ③④</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>交通管理支援</td>
<td></td>
<td>52</td>
<td>路上作業中表示</td>
<td>安全</td>
<td>Roadwork</td>
<td>④</td>
<td></td>
</tr>
<tr>
<td>交通管理支援</td>
<td></td>
<td>53</td>
<td>安全の提供支援</td>
<td>安全</td>
<td>安全運転支援</td>
<td>①, ②, ③</td>
<td></td>
</tr>
<tr>
<td>交通管理支援</td>
<td>携帯型追従走行支援</td>
<td>54</td>
<td>②④, ③④</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>交通管理支援</td>
<td></td>
<td>55</td>
<td>路上作業中表示</td>
<td>安全</td>
<td>Roadwork</td>
<td>④</td>
<td></td>
</tr>
<tr>
<td>アプリ種別</td>
<td>No</td>
<td>アプリ名称</td>
<td>類型化ユースケース</td>
<td>日</td>
<td>欧</td>
<td>米</td>
<td></td>
</tr>
<tr>
<td>------------</td>
<td>----</td>
<td>------------</td>
<td>-----------------</td>
<td>---</td>
<td>---</td>
<td>---</td>
<td></td>
</tr>
<tr>
<td>運転支援</td>
<td>32</td>
<td>商用車管理</td>
<td>観客の確保/車両の管理</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>予約・決済</td>
<td>27</td>
<td>盗難車情報提供</td>
<td>盗難車情報提供</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>交通関連情報提供</td>
<td>16</td>
<td>道路課金支援</td>
<td>ETC/EFC</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>メッセージ交換</td>
<td>37</td>
<td>インターネット接続</td>
<td>インターネット接続</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>地域情報提供</td>
<td>29</td>
<td>車両データ収集支援</td>
<td>車両データ収集支援</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>リモートメンテナンス</td>
<td>21</td>
<td>リモートメンテナンス</td>
<td>リモートメンテナンス</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>ロードアシスト</td>
<td>22</td>
<td>ロードアシスト</td>
<td>ロードアシスト</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>電子予約・決済支援</td>
<td>24</td>
<td>電子予約・決済支援</td>
<td>電子予約・決済支援</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>路車間での交通最適化</td>
<td>26</td>
<td>路車間での交通最適化</td>
<td>車線利用均一化支援</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>制限通行警告・迂回路通知</td>
<td>28</td>
<td>高度交通流管理</td>
<td>Intelligent Congestion Control</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>具体施設入退場支援</td>
<td>25</td>
<td>車両交通管理支援</td>
<td>車両交通管理支援</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>公共交通機関情報提供</td>
<td>23</td>
<td>データダウンロード・更新</td>
<td>データダウンロード・更新</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>商用車物流管理</td>
<td>20</td>
<td>商用車物流管理</td>
<td>商用車物流管理</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>地図ダウンロード・更新</td>
<td>33</td>
<td>地図ダウンロード・更新</td>
<td>地図ダウンロード・更新</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>公共車両信号優先</td>
<td>34</td>
<td>地図ダウンロード・更新</td>
<td>地図ダウンロード・更新</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>車両データ収集支援</td>
<td>35</td>
<td>地図ダウンロード・更新</td>
<td>地図ダウンロード・更新</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>電子予約・決済支援</td>
<td>36</td>
<td>地図ダウンロード・更新</td>
<td>地図ダウンロード・更新</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>車両交通管理支援</td>
<td>37</td>
<td>地図ダウンロード・更新</td>
<td>地図ダウンロード・更新</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>交通関連情報提供</td>
<td>38</td>
<td>地図ダウンロード・更新</td>
<td>地図ダウンロード・更新</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td></td>
</tr>
</tbody>
</table>

具体的なユースケース

<table>
<thead>
<tr>
<th>ユースケース</th>
<th>日</th>
<th>欧</th>
<th>米</th>
</tr>
</thead>
<tbody>
<tr>
<td>車両データ収集支援</td>
<td>1</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>リモートメンテナンス</td>
<td>1</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>ロードアシスト</td>
<td>1</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>地図ダウンロード・更新</td>
<td>1</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>公共交通機関情報提供</td>
<td>1</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>商用車物流管理</td>
<td>1</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>地図ダウンロード・更新</td>
<td>1</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>公共車両信号優先</td>
<td>1</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>車両データ収集支援</td>
<td>1</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>電子予約・決済支援</td>
<td>1</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>車両交通管理支援</td>
<td>1</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>交通関連情報提供</td>
<td>1</td>
<td>0</td>
<td>1</td>
</tr>
</tbody>
</table>

表3.2.1-4 類型化ユースケース上へのCOMeSafety2ユースケースマッピング結果（詳細）：続き

<table>
<thead>
<tr>
<th>ユースケース</th>
<th>日</th>
<th>欧</th>
<th>米</th>
</tr>
</thead>
<tbody>
<tr>
<td>車両データ収集支援</td>
<td>1</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>リモートメンテナンス</td>
<td>1</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>ロードアシスト</td>
<td>1</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>地図ダウンロード・更新</td>
<td>1</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>公共交通機関情報提供</td>
<td>1</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>商用車物流管理</td>
<td>1</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>地図ダウンロード・更新</td>
<td>1</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>公共車両信号優先</td>
<td>1</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>車両データ収集支援</td>
<td>1</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>電子予約・決済支援</td>
<td>1</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>車両交通管理支援</td>
<td>1</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>交通関連情報提供</td>
<td>1</td>
<td>0</td>
<td>1</td>
</tr>
</tbody>
</table>
3.2.2 メッセージ構成案の EN 版 CAM, DENM との比較検証

日本自動車研究所は C-ITS の想定アプリの内、安全系アプリの実行に必要あるいは推奨されるべき情報をアプリ定義案の記述をもとに分析、抽出するとともに、日米欧の安全系アプリに使用されるメッセージの情報項目をも比較分析して、整理し、その結果をもとに 2011 年度に安全系アプリのメッセージ案を以下のように策定した。

本報告では、かかるメッセージ案を、欧米協調の結果としての欧州の主に安全系アプリに使用される最新のメッセージ CAM (ETSI EN 302637-2)、DENM (ETSI EN 302637-3) の分析結果と比較することで検証した。

安全系アプリのメッセージ案（*1）

C-ITS アプリのメッセージセット MSG_S は米国のメッセージ、データ辞書の規格 SAE J2735 と同様に表 3.2.2-1 に示す、メッセージ (MSG)、データセット (DS)、データフレーム (DF)、データエレメント (DE) より構成される。ただし、本メッセージ案では DF の上の概念として DS を新たに追加している。

メッセージは、DE、DF、DS の組合せとして図 3.2.2-1 に示すように例示される。

表 3.2.2-1 メッセージの構成

<table>
<thead>
<tr>
<th>名称</th>
<th>略称</th>
<th>定義</th>
</tr>
</thead>
<tbody>
<tr>
<td>メッセージセット</td>
<td>MSG_S</td>
<td>関連する ITS サービス群に関するメッセージの集合</td>
</tr>
<tr>
<td>メッセージ</td>
<td>MSG</td>
<td>アプリケーションに関連してデータの意味を伝えるために、装置間で一つの単位として送信することができる構造化されたデータセットあるいはデータフレーム、データエレメントの集合</td>
</tr>
<tr>
<td>データセット</td>
<td>DS</td>
<td>メッセージまたはその一部を記述するために一つまたはそれ以上のデータフレームやデータエレメントを既知の順序で集めたもの</td>
</tr>
<tr>
<td>データフレーム</td>
<td>DF</td>
<td>メッセージやデータセットまたはその一部を記述するために一つまたはそれ以上のデータエレメントや他のデータフレームを既知の順序で集めたもの</td>
</tr>
<tr>
<td>データエレメント</td>
<td>DE</td>
<td>各種エンティティ（時刻、位置、方位、事象、コンテンツ、制御、目的、概念、状態、特性等）について、どの時点でも単一値を取る情報の単一ユニットをシナックス形式で表現したもので、これ以上は分割不能なデータを言う。</td>
</tr>
</tbody>
</table>

図 3.2.2-1 メッセージの構成例

表 3.2.2-2 に定義される 4 つの DS の組合せで、以下のように 4 種類のメッセージが形成される。4 つの DS の内、DS_メッセージ管理情報と DS_ステーション情報は必須であるが、
DS_事象内容情報、DS_コンテンツ情報はメッセージに応じ必須あるいはオプションとして扱われる。なお、表3.2.2-2には各DS内の情報項目を示しているが、各々の情報項目の定義については別途*1に示す報告書を参照されたい。

MSG1 ::=SEQUENCE{DS_メッセージ管理情報, DS_ステーション情報}
MSG2 ::=SEQUENCE{DS_メッセージ管理情報, DS_ステーション情報, DS_事象内容情報}
MSG3 ::=SEQUENCE{DS_メッセージ管理情報, DS_ステーション情報, DS_コンテンツ情報}
MSG4 ::=SEQUENCE{DS_メッセージ管理情報, DS_ステーション情報, DS_事象内容情報, DS_コンテンツ情報}

<table>
<thead>
<tr>
<th>表3.2.2-2</th>
<th>安全アプリのメッセージを構成する4DS</th>
</tr>
</thead>
<tbody>
<tr>
<td>DS</td>
<td>定義</td>
</tr>
<tr>
<td>メッセージ管理情報</td>
<td>メッセージ管理のための情報。メッセージのIDや構成、生成時刻、優先度等と、これらデータを制御するための情報のDEやDFの集合体である。</td>
</tr>
<tr>
<td>メッセージ管理情報</td>
<td>メッセージ管理のための情報。メッセージのIDや構成、生成時刻、優先度等と、これらデータを制御するための情報のDEやDFの集合体である。</td>
</tr>
<tr>
<td>セーション(ST)情報</td>
<td>STやSTで形成するデータに関する基礎情報。STのタイプやID、その位置、方位、属性、状態、生成時刻等と、これらデータを制御するための情報のDEやDFの集合体である。</td>
</tr>
<tr>
<td>事象内容情報</td>
<td>事象とその内容に関わる情報。事象のID、発生時刻、位置、方位、内容、属性や事象の優先度等と、これらデータを制御するための情報のDEやDFの集合体である。</td>
</tr>
<tr>
<td>コンテンツ情報</td>
<td>コンテンツとその内容に関わる情報。コンテンツのID、発生時刻、内容、属性やコンテンツの優先度等と、これらデータを制御するための情報のDEやDFの集合体である。</td>
</tr>
</tbody>
</table>

図3.2.2-2に日本自動車研究所のメッセージ案のDSレベルと、CAM/DENMのコンテンツレベルでの比較を示した。CAM/DENMのコンテンツはDE/DFの集合であり、本メッセージ案のDS的性格のものであるが、CAM/DENMではDSという定義がないためDFとして扱っている。

本メッセージ案のDSでCAM/DENMのコンテンツ情報は説明できる。またここでは詳細な
を記載していないが、本メッセージ案の情報項目により CAM/DENM の全 DE/DF 項目を説明できることを検証した。

CAM/DENM は安全事象を最終的には車両側で判断してユーザに提示するためのメッセージであり、日本の ITS スポットのように「注意コンテンツ」を路側から提示するサービスのメッセージではないためコンテンツ情報は含まれていない。ITS スポットサービスでは上記 MSG3 にあたるメッセージが存在する。

図 3.2.2-2 JARI メッセージ案（DS レベル）と CAM/DENM（コンテナレベル）の比較

*1：「ITS 車載システムの標準化に関する調査研究報告書」，平成 23 年 3 月，日本自動車研究所

3.2.3 データ辞書案の検証と改訂

2012 年度に公表した「協調システムのデータ辞書（案） Ver2」は日米欧のメッセージをベースにしたものであるが、欧州のメッセージ CAM、DENM は欧米協調の結果、EN 版はベースとした TS 版より大きく変更されたことが EN 版／TS 版規格の比較分析の結果より明らかとなった。また、米国のメッセージ規格 SAE J2735 もかかる欧米協調の結果で変更されると考えられるが、現状未だ改訂中で公表されていないため、この報告では 3.1.2 項に示した EN 版 CAM、DENM の DE/DF および、3.1.3 項の共通データ辞書規格の DE/DF をベースにデータ辞書（案） Ver2 を検証し、その結果をもとにデータ辞書（案）を改訂した。

3.1.2 項で分析した EN 版 CAM、DENM の DS/DF/DE の一覧を表 3.2.3-1～3 に、また DF と上位の DS/DF との関係を表 3.2.3-4 に、DE と DF との関係を表 3.2.3-5 に示した。CAM、DENM には前述のように DS という定義は存在しないが、表 3.2.3-1 に示す項目は DF として定義されていなかったため、本報告では DS として扱った。表 3.2.3-1～3 において、右端の CAM、DENM、TS 欄は各々の DS/DF/DE が記載されている、EN302637-2（CAM）、EN302637-3（DENM）の Annex B および TS102894-2（共通データ辞書）の Annex A の番号である。
<table>
<thead>
<tr>
<th>No.</th>
<th>記述名(EN)</th>
<th>記述名(JN)</th>
<th>内容</th>
<th>フォーマット</th>
<th>番号</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>CoopAwareness</td>
<td>CAM</td>
<td>CAMペイロード: CAMのタイムスタンプ(DF_CAM生成時刻差分)とDF_CAMパラメータで構成。- 必須コンテナ: 基本コンテナと高頻度コンテナ- オプションコンテナ: 高頻度コンテナ、特殊車両コンテナ</td>
<td>SEQUENCE { GenerationDeltaTime, CamParameters}</td>
<td>B.2</td>
</tr>
<tr>
<td>2</td>
<td>DecentralizedEnvironEntNotificaionMessage</td>
<td>DENM</td>
<td>DENMペイロード:DF_管理コンテナ, DF_状況コンテナ(オプション), DF_位置コンテナ(オプション), DF_アラカルトコンテナ(オプション)で構成</td>
<td>SEQUENCE { ManagementContainer, SituationContainer, LocationContainer, AlacarteContainer}</td>
<td>B.2</td>
</tr>
</tbody>
</table>

なお、表3.2.3-1～5における記述名(JN)欄の色は、情報の種別を表しており下表の通りである。

<table>
<thead>
<tr>
<th>情報コンテンツ（情報の内容）</th>
</tr>
</thead>
<tbody>
<tr>
<td>故障・ダイアグ情報</td>
</tr>
<tr>
<td>車両属性情報</td>
</tr>
<tr>
<td>車両走行状態情報</td>
</tr>
<tr>
<td>位置・距離情報</td>
</tr>
<tr>
<td>方位情報</td>
</tr>
<tr>
<td>タイム・時間情報</td>
</tr>
<tr>
<td>データ制御・管理情報</td>
</tr>
<tr>
<td>項目</td>
</tr>
<tr>
<td>-----------</td>
</tr>
<tr>
<td>3.2.3.2</td>
</tr>
<tr>
<td>cam</td>
</tr>
<tr>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>表3.2.3.2</th>
<th>EN版 DENM の DF 一覧</th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Item</td>
<td>EN</td>
<td>JP</td>
<td>英語版 DENM の DF 一覧:</td>
</tr>
<tr>
<td></td>
<td>序列</td>
<td>SEQUENCE { Name, Value } B.14 14</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>SEQUENCE { Name, Value } B.14 14</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>SEQUENCE { Name, Value } B.14 14</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>SEQUENCE { Name, Value } B.14 14</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>SEQUENCE { Name, Value } B.14 14</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>SEQUENCE { Name, Value } B.14 14</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>SEQUENCE { Name, Value } B.14 14</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>SEQUENCE { Name, Value } B.14 14</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>SEQUENCE { Name, Value } B.14 14</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>SEQUENCE { Name, Value } B.14 14</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>SEQUENCE { Name, Value } B.14 14</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>SEQUENCE { Name, Value } B.14 14</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>SEQUENCE { Name, Value } B.14 14</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>SEQUENCE { Name, Value } B.14 14</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>SEQUENCE { Name, Value } B.14 14</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>SEQUENCE { Name, Value } B.14 14</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>SEQUENCE { Name, Value } B.14 14</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>SEQUENCE { Name, Value } B.14 14</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>SEQUENCE { Name, Value } B.14 14</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>SEQUENCE { Name, Value } B.14 14</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>SEQUENCE { Name, Value } B.14 14</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>SEQUENCE { Name, Value } B.14 14</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>SEQUENCE { Name, Value } B.14 14</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>SEQUENCE { Name, Value } B.14 14</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>SEQUENCE { Name, Value } B.14 14</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>SEQUENCE { Name, Value } B.14 14</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>SEQUENCE { Name, Value } B.14 14</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>SEQUENCE { Name, Value } B.14 14</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>SEQUENCE { Name, Value } B.14 14</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>SEQUENCE { Name, Value } B.14 14</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>SEQUENCE { Name, Value } B.14 14</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>SEQUENCE { Name, Value } B.14 14</td>
<td></td>
</tr>
</tbody>
</table>

注: 表はDENMのDF一覧を示す。DENMは道路交通情報システムを統一するための規格であり、様々なユースケースに対応するフォーマットを定義している。
表 3.2.3-3 EN 版 CAM. DENM の DE 一覧

<table>
<thead>
<tr>
<th>項目名</th>
<th>記述名(JN)</th>
<th>記述名(EN)</th>
<th>定義</th>
<th>意味</th>
</tr>
</thead>
<tbody>
<tr>
<td>CurvatureValue</td>
<td>カーブ値</td>
<td>CurvatureCalculationMode</td>
<td>車両の旋回カーブ半径の逆数を記述,カーブは,実際の車両軌跡のカーブを表す</td>
<td>-30000~30001,整数値,1/30000m単位:+=左旋回カーブ,0=直進時,30001=不明時</td>
</tr>
<tr>
<td>DeltaLongitude</td>
<td>経度差分</td>
<td>GenerationDeltaTime</td>
<td>特定経度値に対する差分経度.特定の基準位置に対する位置の記述に使用</td>
<td>-131072~131071,整数値,0.1μ°単位:正数:基準位置から東への差分,負数:基準位置から西への差分</td>
</tr>
<tr>
<td>DeltaLatitude</td>
<td>緯度差分</td>
<td>GenerationDeltaTime</td>
<td>特定緯度値に対する差分緯度.特定の基準位置に対する位置の記述に使用</td>
<td>-131072~131071,整数値,0.1μ°単位:正数:基準位置から北への差分,負数:基準位置から南への差分</td>
</tr>
<tr>
<td>DeltaAltitude</td>
<td>高度差分</td>
<td>GenerationDeltaTime</td>
<td>特定海抜値に対する差分高度. 特定の基準位置に対する位置の記述に使用</td>
<td>-12700~12800,整数値,0.01m単位:正数:基準高度からup,負数:基準高度からdown</td>
</tr>
<tr>
<td>DangerousGoodsBasic</td>
<td>危険物基本</td>
<td>GenerationDeltaTime</td>
<td>大型車両によって運ばれる危険物のタイプ.値はEuropean Agreement (Applicable as from 1 January 2011): “Concerning the International Carriage of Dangerous Goods by Road”の規定に従う.</td>
<td>ENUMERATED:0=停止可能,1=閉鎖,2=開放</td>
</tr>
<tr>
<td>EmergencyPriority</td>
<td>緊急優先度</td>
<td>EmergencyActionCode</td>
<td>緊急車両によって運用中に要求される優先権を示す</td>
<td>BIT STRING(SIZE(2)):ビット=1;優先を要求</td>
</tr>
<tr>
<td>EmergencyActionCode</td>
<td>緊急アクションコード</td>
<td>EmergencyActionCode</td>
<td>緊急サービスの事件対処情報を示す車両の物理的標識プラカード</td>
<td>IA5String</td>
</tr>
<tr>
<td>InformationQuality</td>
<td>情報品質</td>
<td>InformationQuality</td>
<td>送信元ITS-S のITSアプリで提供される情報の品質水準.検出イベントがイベント位置に本当に存在している確率を示す</td>
<td>0~7,整数値:0=不明,1=最低水準,7=最高水準</td>
</tr>
<tr>
<td>LateralAccelerationValue</td>
<td>横加速度値</td>
<td>LateralAccelerationValue</td>
<td>横方向の車両加速度</td>
<td>-160~161,整数値,0.1 m/s²単位:負数=車両の向かう方向に対し右側に加速,正数=車両の向かう方向に対し左側に加速</td>
</tr>
<tr>
<td>LimitedQuantity</td>
<td>限定量</td>
<td>LimitedQuantity</td>
<td>プロパギナートの荷物の重量またはポリスチレン板の厚さ等の制限を示す.</td>
<td></td>
</tr>
</tbody>
</table>
表 3.2.3-3 EN版 CAM, DENM の DE一覧：続き

<table>
<thead>
<tr>
<th>項目</th>
<th>記述名(EN)</th>
<th>記述名(JN)</th>
<th>内容</th>
<th>フォーマット</th>
</tr>
</thead>
<tbody>
<tr>
<td>81</td>
<td>VehicleWidth</td>
<td>車幅</td>
<td>サイドミラーを含む車両の推定幅</td>
<td>1~62,整数値,0.1m単位:61=61以上,62=不明</td>
</tr>
<tr>
<td>82</td>
<td>VerticalAccelerationValue</td>
<td>垂直加速度値</td>
<td>垂直方向の車両加速度</td>
<td>-160~161,整数値,0.1 m/s²単位:負数=下向きに加速,161=不明</td>
</tr>
<tr>
<td>83</td>
<td>VehicleLengthConfidence</td>
<td>車両長さ信頼度</td>
<td>車両長さの95%信頼水準での絶対精度範囲</td>
<td>ENUMERATED:0=0.01m以内,1=0.05m以内,2=0.1m以内,3=0.5m以内,4=1m以内</td>
</tr>
<tr>
<td>84</td>
<td>TransmissionInterval</td>
<td>送信間隔</td>
<td>送信元ITS-Sによって定義されるDENM反復のための時間間隔</td>
<td>DEがDENMに含まれない場合には、開始時刻を用いる</td>
</tr>
<tr>
<td>85</td>
<td>TimestampIts</td>
<td>タイムスタンプ</td>
<td>検出時刻:イベントが送信元ITS-Sによって検出される時刻</td>
<td>0~9999,整数値,sec単位:0=イベント検出時,1=デフォルトオフセット600秒</td>
</tr>
<tr>
<td>86</td>
<td>UnNumber</td>
<td>UNナンバー</td>
<td>危険物の物質を特定する4桁の数</td>
<td>0~9999,整数値</td>
</tr>
<tr>
<td>87</td>
<td>TurningRadius</td>
<td>旋回半径</td>
<td>車両の最小旋回半径(ie Uターン).トラッカーを持つ車両では、旋回半径は車両だけに適用</td>
<td>0~255,整数値,0.4m単位:254=254以上,255=不明</td>
</tr>
<tr>
<td>88</td>
<td>StationType</td>
<td>ステーションタイプ</td>
<td>ITS-Sのステーションタイプ</td>
<td>0~255,整数値:0=不明,1=歩行者,2=自転車,3=モペット,4=自動二輪,5=乗用車,6=バス,7=トラック,8=コンテナ,9=特殊輸送(重量物,幅超過,長さ超過または高さ超過)</td>
</tr>
<tr>
<td>89</td>
<td>StationID</td>
<td>ステーションID</td>
<td>アプリとファシリティー層でITSメッセージを生成するITS-Sの識別子</td>
<td>0~65535,整数値</td>
</tr>
<tr>
<td>90</td>
<td>RoadworksSubCauseCode</td>
<td>道路工事サブ原因コード</td>
<td>イベントタイプ「道路工事」のサブ原因コード.値はEN302 637-3, 7.1.3で割り当て</td>
<td>0~255,整数値:0=詳細情報が不明,1=主要な道路工事が進行中,2=路面表示工事が進行中,3=低速道路保守作業が進行中,4=冬期サービス作業が進行中,5=道路清掃車作業</td>
</tr>
<tr>
<td>91</td>
<td>RoadClass</td>
<td>道路クラス</td>
<td>イベント位置における道路区分のタイプ</td>
<td>ENUMERATED:0=不明,1=高速道路,2=都道,3=県道,4=市道,5=一般道,6=郡道,7=村道,8=小路,9=特殊輸送道路,10=特別道路</td>
</tr>
<tr>
<td>92</td>
<td>SpecialTransportType</td>
<td>特殊輸送タイプ</td>
<td>車両ITS-Sが重量物,幅超過,長さ超過または高さ超過の貨物を運搬中かどうか</td>
<td>BIT STRING(SIZE(4)):0000=0,0001=1,0010=2,0011=3,0100=4,0101=5,0110=6,0111=7,1000=8,1001=9,1010=10,1011=11,1100=12,1101=13,1110=14,1111=15</td>
</tr>
<tr>
<td>93</td>
<td>SpeedConfidence</td>
<td>速度信頼度</td>
<td>速度信頼度</td>
<td>1~127,整数値,0.01 m/s単位:126=126以上,127=不明</td>
</tr>
<tr>
<td>94</td>
<td>SpecialVehicleType</td>
<td>特殊車両タイプ</td>
<td>特殊車両の種類</td>
<td>BIT STRING(SIZE(4)):0000=0,0001=1,0010=2,0011=3,0100=4,0101=5,0110=6,0111=7,1000=8,1001=9,1010=10,1011=11,1100=12,1101=13,1110=14,1111=15</td>
</tr>
<tr>
<td>95</td>
<td>SpecialVehicleCategory</td>
<td>特殊車両カテゴリ</td>
<td>特殊車両の種類</td>
<td>ENUMERATED:0=不明,1=特殊車両,2=特殊輸送,3=特殊工事件,4=特殊車両工事</td>
</tr>
<tr>
<td>96</td>
<td>SpecialVehicleSubcategory</td>
<td>特殊車両サブカテゴリ</td>
<td>特殊車両の種類</td>
<td>ENUMERATED:0=不明,1=特殊車両,2=特殊輸送,3=特殊工事件,4=特殊車両工事</td>
</tr>
<tr>
<td>97</td>
<td>SideCigar</td>
<td>車両側面寸法</td>
<td>サイドミラーを含む車両の推定幅</td>
<td>1~62,整数値,0.1m単位:61=61以上,62=不明</td>
</tr>
<tr>
<td>98</td>
<td>SideCigarConfidence</td>
<td>車両側面信頼度</td>
<td>車両側面の推定幅の95%信頼水準での絶対精度範囲</td>
<td>ENUMERATED:0=0.01m以内,1=0.05m以内,2=0.1m以内,3=0.5m以内,4=1m以内</td>
</tr>
<tr>
<td>99</td>
<td>SpecialVehicleSubcategoryConfidence</td>
<td>特殊車両サブカテゴリ信頼度</td>
<td>特殊車両サブカテゴリの信頼水準</td>
<td>1~127,整数値,1.5°単位:1=1.5°以下,126=189°以上,127=不明</td>
</tr>
</tbody>
</table>

註記

- 本表は各項目の詳細説明に付記されている。
- 未定義項目は「不明」に記載されている。
表 3.2.3-4 EN 版 CAM/DENM の DF と上位 DS/DF との関係

<table>
<thead>
<tr>
<th>記述名(EN)</th>
<th>記述名(JN)</th>
</tr>
</thead>
<tbody>
<tr>
<td>ItsPduHeader</td>
<td>CoopAwareness</td>
</tr>
<tr>
<td>DecentralizedEnvironmentalNotificationMessage</td>
<td>AlacarteContainer</td>
</tr>
<tr>
<td>BasicContainer</td>
<td>...</td>
</tr>
<tr>
<td>RestrictedTypes</td>
<td>Speed</td>
</tr>
<tr>
<td>SteeringWheelAngle</td>
<td>Traces</td>
</tr>
<tr>
<td>VehicleIdentification</td>
<td>VehicleLength</td>
</tr>
<tr>
<td>VerticalAcceleration</td>
<td>YawRate</td>
</tr>
<tr>
<td>No</td>
<td>記述名(EN)</td>
</tr>
<tr>
<td>1</td>
<td>DF</td>
</tr>
<tr>
<td>2</td>
<td>DF</td>
</tr>
<tr>
<td>3</td>
<td>DF</td>
</tr>
<tr>
<td>4</td>
<td>DF</td>
</tr>
<tr>
<td>5</td>
<td>DF</td>
</tr>
<tr>
<td>6</td>
<td>DF</td>
</tr>
<tr>
<td>7</td>
<td>DF</td>
</tr>
<tr>
<td>8</td>
<td>DF</td>
</tr>
<tr>
<td>9</td>
<td>DF</td>
</tr>
<tr>
<td>10</td>
<td>DF</td>
</tr>
<tr>
<td>11</td>
<td>DF</td>
</tr>
<tr>
<td>12</td>
<td>DF</td>
</tr>
<tr>
<td>13</td>
<td>DF</td>
</tr>
<tr>
<td>14</td>
<td>DF</td>
</tr>
<tr>
<td>15</td>
<td>DF</td>
</tr>
<tr>
<td>16</td>
<td>DF</td>
</tr>
<tr>
<td>17</td>
<td>DF</td>
</tr>
<tr>
<td>18</td>
<td>DF</td>
</tr>
<tr>
<td>19</td>
<td>DF</td>
</tr>
<tr>
<td>20</td>
<td>DF</td>
</tr>
<tr>
<td>21</td>
<td>DF</td>
</tr>
<tr>
<td>22</td>
<td>DF</td>
</tr>
<tr>
<td>23</td>
<td>DF</td>
</tr>
<tr>
<td>24</td>
<td>DF</td>
</tr>
<tr>
<td>25</td>
<td>DF</td>
</tr>
<tr>
<td>26</td>
<td>DF</td>
</tr>
<tr>
<td>27</td>
<td>DF</td>
</tr>
<tr>
<td>28</td>
<td>DF</td>
</tr>
<tr>
<td>29</td>
<td>DF</td>
</tr>
<tr>
<td>30</td>
<td>DF</td>
</tr>
<tr>
<td>31</td>
<td>DF</td>
</tr>
<tr>
<td>32</td>
<td>DF</td>
</tr>
<tr>
<td>33</td>
<td>DF</td>
</tr>
<tr>
<td>34</td>
<td>DF</td>
</tr>
<tr>
<td>35</td>
<td>DF</td>
</tr>
<tr>
<td>36</td>
<td>DF</td>
</tr>
<tr>
<td>37</td>
<td>DF</td>
</tr>
<tr>
<td>38</td>
<td>DF</td>
</tr>
<tr>
<td>39</td>
<td>DF</td>
</tr>
<tr>
<td>40</td>
<td>DF</td>
</tr>
<tr>
<td>41</td>
<td>DF</td>
</tr>
<tr>
<td>42</td>
<td>DF</td>
</tr>
<tr>
<td>43</td>
<td>DF</td>
</tr>
<tr>
<td>44</td>
<td>DF</td>
</tr>
<tr>
<td>45</td>
<td>DF</td>
</tr>
<tr>
<td>46</td>
<td>DF</td>
</tr>
<tr>
<td>47</td>
<td>DF</td>
</tr>
</tbody>
</table>

注意: 表の詳細内容は、上記の記述名に対応する情報を示しています。
<table>
<thead>
<tr>
<th>No.</th>
<th>記述名(EN)</th>
<th>記述名(JN)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>DE AccelerationConfidence</td>
<td>加速度信頼度</td>
</tr>
<tr>
<td>2</td>
<td>DE AccelerationControl</td>
<td>加速度制御</td>
</tr>
<tr>
<td>3</td>
<td>DE AltitudeConfidence</td>
<td>高度信頼度</td>
</tr>
<tr>
<td>4</td>
<td>DE AltitudeValue</td>
<td>高度値</td>
</tr>
<tr>
<td>5</td>
<td>DE CauseCodeType</td>
<td>原因コードタイプ</td>
</tr>
<tr>
<td>6</td>
<td>DE CompanyName</td>
<td>会社名</td>
</tr>
<tr>
<td>7</td>
<td>DE CurvatureCalculationMode</td>
<td>カーブ計算モード</td>
</tr>
<tr>
<td>8</td>
<td>DE CurvatureConfidence</td>
<td>カーブ信頼度</td>
</tr>
<tr>
<td>9</td>
<td>DE CurvatureValue</td>
<td>カーブ値</td>
</tr>
<tr>
<td>10</td>
<td>DE DangerousGoodsBasic</td>
<td>危険物基本</td>
</tr>
<tr>
<td>11</td>
<td>DE DeltaLatitude</td>
<td>緯度差分</td>
</tr>
<tr>
<td>12</td>
<td>DE DeltaLongitude</td>
<td>経度差分</td>
</tr>
<tr>
<td>13</td>
<td>DE DeltaAltitude</td>
<td>高度差分</td>
</tr>
<tr>
<td>14</td>
<td>DE DriveDirection</td>
<td>運転方向</td>
</tr>
<tr>
<td>15</td>
<td>DE DrivingLaneStatus</td>
<td>走行車線状態</td>
</tr>
<tr>
<td>16</td>
<td>DE ElevatedTemperature</td>
<td>温度上昇</td>
</tr>
<tr>
<td>17</td>
<td>DE EmbarkationStatus</td>
<td>乗降状態</td>
</tr>
<tr>
<td>18</td>
<td>DE EmergencyActionCode</td>
<td>緊急アクションコード</td>
</tr>
<tr>
<td>19</td>
<td>DE EmergencyPriority</td>
<td>緊急優先度</td>
</tr>
<tr>
<td>20</td>
<td>DE EnergyStorageType</td>
<td>エネルギー格納タイプ</td>
</tr>
<tr>
<td>21</td>
<td>DE ExteriorLights</td>
<td>外部灯火</td>
</tr>
<tr>
<td>22</td>
<td>DE GenerationDeltaTime CAM生成時刻差分</td>
<td></td>
</tr>
<tr>
<td>23</td>
<td>DE HardShoulderStatus</td>
<td>路肩状態</td>
</tr>
<tr>
<td>24</td>
<td>DE HeadingConfidence</td>
<td>方位信頼度</td>
</tr>
<tr>
<td>25</td>
<td>DE HeadingValue</td>
<td>方位値</td>
</tr>
<tr>
<td>26</td>
<td>DE HeightLonCarr</td>
<td>キャリア高さ</td>
</tr>
<tr>
<td>27</td>
<td>DE InformationQuality</td>
<td>情報品質</td>
</tr>
<tr>
<td>28</td>
<td>DE isCancellation</td>
<td>キャンセル</td>
</tr>
<tr>
<td>29</td>
<td>DE isNegation</td>
<td>否定</td>
</tr>
<tr>
<td>30</td>
<td>DE LaneNumber</td>
<td>車線番号</td>
</tr>
<tr>
<td>31</td>
<td>DE LateralAccelerationValue</td>
<td>横加速度値</td>
</tr>
<tr>
<td>32</td>
<td>DE Latitude</td>
<td>緯度</td>
</tr>
<tr>
<td>33</td>
<td>DE LightBarSirenInUse</td>
<td>ライトバー・サイレン使用</td>
</tr>
<tr>
<td>34</td>
<td>DE LimitedQuantity</td>
<td>限定量</td>
</tr>
<tr>
<td>35</td>
<td>DE Longitude</td>
<td>経度</td>
</tr>
<tr>
<td>36</td>
<td>DE LongitudinalAccelerationValue</td>
<td>縦加速度値</td>
</tr>
<tr>
<td>37</td>
<td>DE MessageID</td>
<td>メッセージID</td>
</tr>
<tr>
<td>38</td>
<td>DE NumberOfOccupants</td>
<td>乗客数</td>
</tr>
<tr>
<td>39</td>
<td>DE PathDeltaTime</td>
<td>差分パス時間</td>
</tr>
<tr>
<td>40</td>
<td>DE PerformanceClass</td>
<td>特性クラス</td>
</tr>
<tr>
<td>41</td>
<td>DE PhoneNumber</td>
<td>電話番号</td>
</tr>
<tr>
<td>42</td>
<td>DE PosCentMass</td>
<td>質量中心位置</td>
</tr>
<tr>
<td>43</td>
<td>DE PosFrontAx</td>
<td>前輪車軸位置</td>
</tr>
<tr>
<td>44</td>
<td>DE PositioningSolutionType</td>
<td>位置標定タイプ</td>
</tr>
<tr>
<td>45</td>
<td>DE PositionOfOccupants</td>
<td>乗員位置</td>
</tr>
<tr>
<td>46</td>
<td>DE PosLonCarr</td>
<td>キャリア位置</td>
</tr>
<tr>
<td>47</td>
<td>DE PosPillar</td>
<td>ピラー位置</td>
</tr>
<tr>
<td>48</td>
<td>DE ProtocolVersion</td>
<td>プロトコルバージョン</td>
</tr>
<tr>
<td>49</td>
<td>DE PtActivationData</td>
<td>優先起動データ</td>
</tr>
<tr>
<td>50</td>
<td>DE PtActivationType</td>
<td>優先起動タイプ</td>
</tr>
<tr>
<td>51</td>
<td>DE RelevanceDistance</td>
<td>関連距離</td>
</tr>
<tr>
<td>52</td>
<td>DE RelevanceTrafficDirection</td>
<td>関連交通方向</td>
</tr>
<tr>
<td>53</td>
<td>DE RequestResponseIndication</td>
<td>要求応答表示</td>
</tr>
<tr>
<td>54</td>
<td>DE RoadClass</td>
<td>道路クラス</td>
</tr>
<tr>
<td>55</td>
<td>DE RoadworksSubCauseCode</td>
<td>道路工事サブ原因コード</td>
</tr>
<tr>
<td>56</td>
<td>DE SemiAxisLength</td>
<td>セミ軸长</td>
</tr>
<tr>
<td>57</td>
<td>DE SequenceNumber</td>
<td>連番</td>
</tr>
<tr>
<td>58</td>
<td>DE SpecialTransportType</td>
<td>特殊輸送タイプ</td>
</tr>
<tr>
<td>59</td>
<td>DE SpeedConfidence</td>
<td>速度信頼度</td>
</tr>
<tr>
<td>60</td>
<td>DE SpeedLimit</td>
<td>速度制限</td>
</tr>
<tr>
<td>61</td>
<td>DE SpeedValue</td>
<td>速度値</td>
</tr>
<tr>
<td>62</td>
<td>DE StationarySince</td>
<td>静止期間</td>
</tr>
<tr>
<td>63</td>
<td>DE StationID</td>
<td>ステーションID</td>
</tr>
<tr>
<td>64</td>
<td>DE StationType</td>
<td>ステーションタイプ</td>
</tr>
<tr>
<td>65</td>
<td>DE SteeringWheelAngleConfidence</td>
<td>ハンドル角信頼度</td>
</tr>
<tr>
<td>66</td>
<td>DE SteeringWheelAngleValue</td>
<td>ハンドル角値</td>
</tr>
<tr>
<td>67</td>
<td>DE SubCauseCodeType</td>
<td>サブ原因コードタイプ</td>
</tr>
<tr>
<td>68</td>
<td>DE Temperature</td>
<td>温度</td>
</tr>
<tr>
<td>69</td>
<td>DE TimestampIts</td>
<td>タイムスタンプ</td>
</tr>
<tr>
<td>70</td>
<td>DE TrafficRule</td>
<td>交通規則</td>
</tr>
<tr>
<td>71</td>
<td>DE TransmissionInterval</td>
<td>送信間隔</td>
</tr>
<tr>
<td>72</td>
<td>DE TunnelsRestricted</td>
<td>トンネル規制</td>
</tr>
<tr>
<td>73</td>
<td>DE TurningRadius</td>
<td>旋回半径</td>
</tr>
<tr>
<td>74</td>
<td>DE UnNumber UNナンバー</td>
<td></td>
</tr>
<tr>
<td>75</td>
<td>DE ValidityDuration</td>
<td>有効期間</td>
</tr>
<tr>
<td>76</td>
<td>DE VDS</td>
<td>車両記述区分</td>
</tr>
<tr>
<td>77</td>
<td>DE VehicleLengthConfidenceIndication</td>
<td>車長信頼度表示</td>
</tr>
<tr>
<td>78</td>
<td>DE VehicleLengthValue</td>
<td>車長値</td>
</tr>
<tr>
<td>79</td>
<td>DE VehicleMass</td>
<td>車両質量</td>
</tr>
<tr>
<td>80</td>
<td>DE VehicleRole</td>
<td>車両役割</td>
</tr>
<tr>
<td>81</td>
<td>DE VehicleWidth</td>
<td>車幅</td>
</tr>
<tr>
<td>82</td>
<td>DE VerticalAccelerationValue</td>
<td>垂直加速度値</td>
</tr>
<tr>
<td>83</td>
<td>DE WheelBaseVehicle</td>
<td>車両ホイールベース</td>
</tr>
<tr>
<td>84</td>
<td>DE WMInumber</td>
<td>国際製造者識別子</td>
</tr>
<tr>
<td>85</td>
<td>DE YawRateConfidence</td>
<td>ヨーレート信頼度</td>
</tr>
<tr>
<td>86</td>
<td>DE YawRateValue</td>
<td>ヨーレート値</td>
</tr>
</tbody>
</table>
以下に、EN 版 CAM/DENM の主な DE あるいは DF とその TS 版との相違点を示す。

ITS PDU ヘッダー
アプリとファシリティー層メッセージのための共通ヘッダーであり、ITS メッセージの始めにメッセージヘッダーとして含まれる。

ItsPduHeader : : = SEQUENCE { ProtocolVersion, MessageID, StationID }

<table>
<thead>
<tr>
<th>記述名 (EN:JN)</th>
<th>内容</th>
<th>フォーマット</th>
</tr>
</thead>
<tbody>
<tr>
<td>DE</td>
<td>ProtocolVersion: プロトコルバージョン</td>
<td>ITS メッセージ and/or 通信プロトコルのバージョン 0～255,整数値:1(現状)</td>
</tr>
<tr>
<td>DE</td>
<td>MessageID: メッセージ ID</td>
<td>ITS メッセージのメッセージタイプ 0～255,整数値:1=DENM,2=CAM,3=POI,4=SPAT,5=MAP,6=IVI,7=IVS,8=EV-RSR</td>
</tr>
<tr>
<td>DE</td>
<td>StationID: ステーション ID</td>
<td>アプリとファシリティー層で ITS メッセージを生成する ITS-S の識別子.ステーション ID は匿名でもよい.空間 and/or 時間ともに異なってもよい 0～4294967295,整数値</td>
</tr>
</tbody>
</table>

TS 版／EN 版の相違点は以下の通り

- TS 版 DENM では DE_ステーション ID がなく、代わりに DE_生成時刻が入っていた。
- EN 版では DE_生成時刻の機能は管理コンテナ中の DE_タイムスタンプ（基準時刻）で記述
- ProtocolVersion: TS 版では=0
- MessageID: TS 版では CAM=0, DENM=1 で CAM, DENM のみ定義

時刻に関する DE

MSG 生成時刻（CAM/DENM）

<table>
<thead>
<tr>
<th>記述名 (EN:JN)</th>
<th>内容</th>
<th>フォーマット</th>
</tr>
</thead>
<tbody>
<tr>
<td>DE</td>
<td>GenerationDeltaTime:CAM 生成時刻差分</td>
<td>基準位置での CAM 生成時の時間. 65536 で分割された TimestampIts 対応値の残り 0〜65535,整数値.msec 単位: =TimestampIts mod 65536</td>
</tr>
<tr>
<td>DE</td>
<td>TimestampIts:タイムスタンプ（DENM 生成時刻）</td>
<td>referenceTime 基準時刻:新 DENM:新 DENM の生成時刻.更新 DENM:更新 DENM の生成時刻.キャンセル DENM:キャンセル DENM の生成時刻.否定 DENM:送信元 ITS-S の受信メッセージテーブルに格納された最新値を設定 0～3153600000000,整数値.msec 単位: UTC 2004 年 1 月 1 日 0 時 0 分 0 秒以降の TAI 時間値</td>
</tr>
</tbody>
</table>
イベント検出時刻（DENM）

| | | 更新 DENM:イベント更新が検出された時刻. | DENM 終了:イベント終了が検出された時刻 | 0〜3153600000000,整数値, msec 単位: UTC 2004 年 1 月 1 日 0 時 0 分 0 秒以降のTAI 時間値

TS 版／EN 版の相違点は以下のように

- MSG 生成時刻:
 TS 版では CAM/DENM とも UNIX 時刻（UTC1970 年 1 月 1 日 0 時基準）で msec 単位
- CAM: EN 版では TimestampIts の65536msec で分割した剰余値。CAM では自車（時刻は既知）からみた差分がわかればよく、データ量も小さくてすむためと思われる
- DENM: EN 版では 2004 年 1 月 1 日 0 時基準の UTC 時刻、100 年後まで
- イベント検出時刻: TS 版にはなし、EN 版では 2004 年 1 月 1 日 0 時基準の UTC 時刻、100 年後まで

時間に関する DE
有効期間（DENM）

<table>
<thead>
<tr>
<th>記述名（EN:JN）</th>
<th>内容</th>
<th>フォーマット</th>
</tr>
</thead>
</table>
| DE ValidityDuration :有効期間 | DENM が DEN 基本サービスから削除されるべき時間. validityDuration の終了で、イベントは終了とする。そのイベント関連情報を DEN 基本サービスで削除
・アプリで提供される場合: 検出時刻から開始するオフセット
・アプリで提供されない場合: 検出時刻からのデフォルトオフセット 600 秒
プリセット時間が満了でも、送信元 ITS-S がイベント継続を検出している場合、DE は送信元 ITS-S によって更新されてもよい | 0〜86400,整数値, sec 単位: 0=イベント検出時刻 |

静止期間（DENM）

| DE StationarySince :静止期間 | 静止車両の静止持続時間（オプション） | ENUMERATED: 0=1 分以下, 1=2 分以下, 2=15 分以下, 3=15 分超 |

TS 版／EN 版の相違点は以下のように

- 有効期間:
 - TS 版では DE_ExpiryTime（満了時間）として同じ管理コンテナ上で規定。ただし、msec 単位と小で format も異なり UTC1970 年 1 月 1 日 0 時からの経過時間で設定
 - EN 版ではイベント検出時刻からのイベント有効期間として max1 日を設定可能
- 静止期間: TS 版ではユースケースの詳細情報を規定するアラカルトコンテナ自体が存在せず
位置・距離に関する DE

基準位置は CAM では差分時刻 generationDeltaTime で測定された送信元 ITS-S 基準点の地理的な位置と位置精度、DENM ではイベント検出時刻 detectionTime で測定された検出イベントの地理的な位置と位置精度で規定され、Latitude 緯度、Longitude 経度、PosConfidenceEllipse 位置信頼度橢円、Altitude 高度を規定している。高度は（AltitudeValue 高度値、AltitudeConfidence 高度信頼度）で規定している。

<table>
<thead>
<tr>
<th>記述名（EN:JN）</th>
<th>内容</th>
<th>フォーマット</th>
</tr>
</thead>
<tbody>
<tr>
<td>DE Latitude:緯度</td>
<td>WGS84 座標系での北半球or南半球の 90 度範囲を示す絶対緯度</td>
<td>-900000001〜900000001, 整数値, 0.1µ° 単位:正数=北半球, 負数=南半球, 900000001=不明</td>
</tr>
<tr>
<td>DE Longitude:経度</td>
<td>WGS84 座標系でのグリニッジ子午線基準の 180°範囲を示す絶対経度</td>
<td>-1800000000〜1800000001, 整数値, 0.1µ° 単位:正数=東側, 負数=西側, 1800000001=不明</td>
</tr>
<tr>
<td>DE AltitudeValue:高度値</td>
<td>WGS84 座標系での高度</td>
<td>-100000〜800001, 整数値, 0.01m 単位:800001=不明, 800000=8000m以上, 0=海抜,-100000=-1000m以下</td>
</tr>
</tbody>
</table>

TS 版／EN 版の相違点は以下の通り

● 緯度、経度：TS 版、EN 版とも 0.1µ° 単位で同。TS 版では BOOLEAN（S/N or E/W）+INTEGER 形式で表現

● 高度：TS 版では 0。1m 単位と大。範囲は-10000〜16767215

● 緯度、経度の精度：EN 版では位置信頼度橢円で定義。位置信頼度橢円は 1/2 長軸長（cm単位）、1/2 短軸長（cm単位）、長軸の北に対する方位（0.1°単位）で規定。TS 版では PositionConfidence として別フォーマット

● 高度の精度：EN 版では事前定義の信頼水準（ex 95%）における絶対精度を 15 段階で規定。TS 版では CAM には定義ないが、DENM では同一定義

● EN 版 DENM では道路工事コンテンツに工事ゾーンの輪郭を描くための推奨経路を工事ゾーンに最も近い出発点から推奨経路の終了点まで最大 40 点の位置で記述する DF_ItineraryPath があるが TS 版にはなし

－107－
パス履歴（CAM/DENM）

CAM では自車両の位置履歴を最大 23 点のパス位置の 1 セットで記述
SEQUENCE SIZE(0..23) OF PathPoint

DENM ではイベント位置の参照情報を最大 23 点のパス位置の 1 セットで記述し、Traces として最大 7 セットのパス履歴を記述可能。最初の点はイベント位置に最も近い点とする。差分パス時間は規定しない。

<table>
<thead>
<tr>
<th>記述名（EN：JN）</th>
<th>内容</th>
<th>フォーマット</th>
</tr>
</thead>
<tbody>
<tr>
<td>DF PathPoint : パス位置</td>
<td>パス内での中間地点の位置 : DF_基準差分位置, DE_差分パス時間で構成</td>
<td>SEQUENCE [DeltaReferencePosition, PathDeltaTime]</td>
</tr>
<tr>
<td>DF DeltaReferencePosition : 基準位置差分</td>
<td>DF ReferencePosition 基準位置で定義の、地理的基準位置に対する差分位置</td>
<td>SEQUENCE [DeltaLatitude, DeltaLongitude, DeltaAltitude]</td>
</tr>
<tr>
<td>DE DeltaLatitude : 緯度差分</td>
<td>DF ReferencePosition 基準位置で定義の、緯度に対する差分緯度</td>
<td>-131072～131071. 整数値, 0.1μ° 単位: 正数: 北への差, 負数: 南への差</td>
</tr>
<tr>
<td>DE DeltaLongitude : 経度差分</td>
<td>DF ReferencePosition 基準位置で定義の、経度に対する差分経度</td>
<td>-131072～131071. 整数値, 0.1μ° 単位: 正数: 東への差, 負数: 西への差</td>
</tr>
<tr>
<td>DE AltitudeValue : 高度値</td>
<td>WGS84 座標系での高度</td>
<td>-100000～800001. 整数値, 0.01m 単位</td>
</tr>
<tr>
<td>DE PathDeltaTime : 差分パス時間</td>
<td>パス位置の間の記録 or 推定の移動時間</td>
<td>0～65535, 整数値, 0.01sec 単位</td>
</tr>
</tbody>
</table>

高度値については DF_DeltaReferencePosition では DE_DeltaAltitude と差分の記述だが、この DE はどこにも定義されていない、したがってここでは DE_AltitudeValue として示した。

TS 版／EN 版の相違点は以下の通り

- CAM：TS 版ではパス履歴はなし
- DENM：TS 版では同様の規定あるが差分ではなく絶対値であり、差分パス時間の規定もなし

以下、車両属性と車両状態に関する DE については EN 版と TS 版を比較する形で示した。

<table>
<thead>
<tr>
<th>項目</th>
<th>EN 版</th>
<th>TS 版</th>
</tr>
</thead>
<tbody>
<tr>
<td>車両のタイプ</td>
<td>DE_StationType</td>
<td>DE_VehicleType</td>
</tr>
<tr>
<td>内容</td>
<td>0～255, 整数値: 0=不明, 1=歩行者, 2=自転車, 3=モペット, 4=自動二輪, 5=乗用車, 6=バス, 7=ライトトラック, 8=ヘビートラック, 9=トレーラ, 10=特殊車両, 11=トラム, 15=路側ユニット</td>
<td>TPEG rtm01(ISO-TS18234-4) に従う車両分類: 0=不明, 1=car, 2=light goods vehicle, 3=heavy goods vehicle, 4=public transport vehicle, 5=pedal cycle, 6=emergency vehicle, 7=works vehicle, ……, 19=motorcycle</td>
</tr>
<tr>
<td>信頼度</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
車長は TPEG rtm01(ISO-TS18234-4)の分類だが EN版は異なる

車両のタイプは TS版は TPEG rtm01(ISO-TS18234-4)の分類だが EN版は異なる

車長、車幅：TS版が1cm単位に対し、EN版は10cm単位と範囲と共に常識的な値に変更

車幅はTS版が 1~1023, 整数値, 0.1m 単位 である。

車両状態に関する DE

<table>
<thead>
<tr>
<th>項目</th>
<th>EN版内容</th>
<th>信頼度</th>
<th>TS版内容</th>
<th>信頼度</th>
</tr>
</thead>
<tbody>
<tr>
<td>方位</td>
<td>DE_HeadingValue</td>
<td>有</td>
<td>DE_Heading</td>
<td>有</td>
</tr>
<tr>
<td>順番: 0～3600, 整数値, 0.1° 単位; 0=北, 右回り</td>
<td>有</td>
<td>DE_Heading</td>
<td>有</td>
<td></td>
</tr>
<tr>
<td>速度</td>
<td>DE_SpeedValue</td>
<td>有</td>
<td>DE_VehicleSpeed</td>
<td>有</td>
</tr>
<tr>
<td>0～16383, 整数値, 0.01 m/s 単位</td>
<td>有</td>
<td>DE_VehicleSpeed</td>
<td>有</td>
<td></td>
</tr>
<tr>
<td>運転方向</td>
<td>DE_DriveDirection</td>
<td>有</td>
<td>DE_VehicleSpeed の正／負で判断</td>
<td>有</td>
</tr>
<tr>
<td>0=前進, 1=後退, 2=情報が不明</td>
<td>有</td>
<td>DE_VehicleSpeed の正／負で判断</td>
<td>有</td>
<td></td>
</tr>
<tr>
<td>縦加速度</td>
<td>DE_LongitudinalAccelerationValue</td>
<td>有</td>
<td>DE_LongAcceleration</td>
<td>有</td>
</tr>
<tr>
<td>max1.63G, 整数値, 0.1 m/s2 単位; + =減速</td>
<td>有</td>
<td>DE_LongAcceleration</td>
<td>有</td>
<td></td>
</tr>
<tr>
<td>横加速度</td>
<td>DE_LateralAccelerationValue</td>
<td>有</td>
<td>DE_LongAcceleration</td>
<td>有</td>
</tr>
<tr>
<td>max1.63G, 整数値, 0.1 m/s2 単位; + =左側</td>
<td>有</td>
<td>DE_LongAcceleration</td>
<td>有</td>
<td></td>
</tr>
<tr>
<td>垂直加速度</td>
<td>DE_VerticalAccelerationValue</td>
<td>有</td>
<td>DE_LongAcceleration</td>
<td>有</td>
</tr>
<tr>
<td>max1.63G, 整数値, 0.1 m/s2 単位; + =上向き</td>
<td>有</td>
<td>DE_LongAcceleration</td>
<td>有</td>
<td></td>
</tr>
<tr>
<td>加速度制御</td>
<td>DE_AccelerationControl</td>
<td>有</td>
<td>DE_LongAcceleration</td>
<td>有</td>
</tr>
<tr>
<td>加速度制御システムの種別と従事中フラグ</td>
<td>有</td>
<td>DE_LongAcceleration</td>
<td>有</td>
<td></td>
</tr>
<tr>
<td>ヨーレート</td>
<td>DE_YawRateValue</td>
<td>有</td>
<td>DE_YawRate</td>
<td>有</td>
</tr>
<tr>
<td>-32767～32767, 0.01° /s 単位; 一=時計回り</td>
<td>有</td>
<td>DE_YawRate</td>
<td>有</td>
<td></td>
</tr>
<tr>
<td>ハンディル角</td>
<td>DE_SteeringWheelAngleValue</td>
<td>有</td>
<td>DE_Curvature</td>
<td>有</td>
</tr>
<tr>
<td>-511～511, 整数値, 1.5° 単位; 0=直進, 一=時計回り</td>
<td>有</td>
<td>DE_Curvature</td>
<td>有</td>
<td></td>
</tr>
<tr>
<td>カーブ軌跡</td>
<td>DE_CurvatureValue</td>
<td>有</td>
<td>DE_Curvature</td>
<td>有</td>
</tr>
<tr>
<td>車両軌跡のカーブ半径の逆数: ~30000〜30001, 整数値, 1/30000m 単位; + =左旋回, 0 =直進</td>
<td>有</td>
<td>DE_Curvature</td>
<td>有</td>
<td></td>
</tr>
</tbody>
</table>

カーブの半径の逆数: ~32765〜32765, 整数値, 1/5 km 単位; + =右カーブ | 有 | DE_Curvature | 有 |
DENM の流布・再送・転送に関する主な DE

いずれも管理コンテナ中で記述（DENM の時刻・位置基準は既に説明）される。

DENM の流布・再送・転送に関する DENM の同定、時間および位置の制約は以下の通りである。

- DENM 同定：DF_ActionID アクション ID（DE_StationID + DE_SequenceNumber）
- 時間的制約：DE_KnowledgeDuration 有効期間【時間に関する DE で説明】，
 DE_TransmissionInterval 送信間隔
- 位置的制約：RelevanceArea 関連領域（DE_RelevanceDistance +
 DE_RelevanceTrafficDirection）

<table>
<thead>
<tr>
<th>記述名（EN:JN）</th>
<th>内容</th>
<th>フォーマット</th>
</tr>
</thead>
<tbody>
<tr>
<td>DF ActionID :アクション ID</td>
<td>ITS-S が特定の位置で初めてイベントを検出するたびに生成される識別子．受信 ITS-S での DENM 情報の処理に使用</td>
<td>SEQUENCE [StationID, SequenceNumber]</td>
</tr>
<tr>
<td>DE StationID :ステーション ID</td>
<td>アプリとファシリティー層で ITS メッセージを生成する ITS-S の識別子</td>
<td>0〜4294967295, 整数値</td>
</tr>
<tr>
<td>DE SequenceNumber :連番</td>
<td>新 DENM の作成毎に設定される連番．同一 ITS-S で検出される異なるイベントの区別に使用</td>
<td>0〜65535, 整数値</td>
</tr>
<tr>
<td>DE TransmissionInterval :送信間隔</td>
<td>送信元 ITS-S により定義の DENM 反復のための時間間隔（オプション）．DENM が DENM に含まれない場合，DENM は再送あるいは転送されない</td>
<td>1〜10000, 整数値, msec 規定単位（または 0.1Hz 〜 1KHz）</td>
</tr>
<tr>
<td>DE RelevanceDistance :関連距離</td>
<td>受信 ITS-S に関するイベント情報における，イベント位置から始まる距離</td>
<td>ENUMERATED: 0=50m 以下，1=100m 以下，2=200m 以下，3=500m 以下，4=1000m 以下，5=5km 以下，6=10km 以下，7=10km 超</td>
</tr>
<tr>
<td>DE RelevanceTrafficDirection :関連交通方向</td>
<td>受信 ITS-S がイベントに遭遇するかもしれない交通方向．DENM が流布されるべき方向</td>
<td>ENUMERATED: 0=不明，1=upstreamTraffic, 2=downstreamTraffic, 3=allTrafficDirection</td>
</tr>
</tbody>
</table>

TS 版／EN 版の相違点は以下の通り

- 送信間隔：TS 版では DE_Frequency 周期として周波数で規定。0〜255，0.1Hz 単位
- 関連距離、関連交通方向：TS 版では前者については状況コンテナ中に多少類似の DE あり，後者は類似 DE 無し
以下に CAM/DENM の TS 版／EN 版の主な相違点についてまとめて示した。

CAM の TS 版／EN 版の主な相違点

- TS 版では DF_ステーション特性で Station の Profile を区分して TaggedList 作成し List の DE/DF を付加
- EN 版では DE_車両役割で VehicleStation の Profile を区分して特殊車両コンテナ中から該当コンテナを選択し付加
- 時間：TS 版では CAM 生成時刻は基準時刻規定だが、EN 版では基準時刻を約 1 時間で区切った差分時刻規定
- 位置：ステーション位置は TS 版、EN 版とも緯度、経度、高度で表現。緯度／経度は単位同一。高度は EN 版が 1 桁小
- EN 版では車両基本属性（車長／車幅）と走行状態量をまとめて高頻度コンテナ（基本車両コンテナ高頻度）で記述

DENM の TS 版／EN 版の主な相違点

- TS 版、EN 版ともヘッダー、管理コンテナ、状況コンテナ、位置コンテナの存在は同一
- EN 版では加えてユースケースの特定情報を記述するアラカルトコンテナが存在。
 ただし CHOICE でなく SEQUENCE ですべてを記載要
- 時間：EN 版では DENM 生成時刻に加えて、イベント検出時刻も記述。時刻の基準は TS 版とは異なる
- 位置：検出イベント位置は TS 版、EN 版とも緯度、経度、高度で表現。緯度／経度は単位同一。高度は EN 版が 1 桁小
 検出イベント位置は TS 版では位置コンテナ上だが、EN 版では管理コンテナで記述
- DENM の終了は EN 版では DE_有効期間（TS では DE_満了時間）、DE_否定に加え DE_キャンセルを追加
 DE_満了時間は時刻で規定だが、DE_有効期間は検出時刻からのオフセット時間で規定
- 同一イベントに関する情報更新を示す DE_データバージョンは EN 版では省略

上記 EN 版 CAM/DENM や、TS 版との比較分析の結果は、車車間通信のメッセージを検討している ASV や、ITS 情報通信システム推進会議の関係者に提供して勉強会等を実施し、これら機関での車車間通信メッセージ検討の材料としていただいた。

上記分析結果が示すように、「協調システムのデータ辞書（案）Ver.2」作成時のベースとした、TS 版 CAM/DENM と、欧米協調の結果として規定された EN 版 CAM/DENM は大きく異なるため、EN 版 CAM/DENM の DE/DF を上記データ辞書（案）と比較検証し、DE/DF 例を EN 版 CAM/DENM の DE/DF に置き換えるとともに、情報項目の不足分は情報項目を追加定義して、データ辞書（案）を Ver.3 として改訂した。

EN 版 CAM/DENM の DE/DF に対応するデータ辞書（案）Ver.3 の DE/DF の名称を表 3.2.3-6 に示した。表において太字赤字下線の DE/DF は EN 版 CAM/DENM の DE/DF に対応するために情報項目を新たに追加したり、定義の記述を修正したものを示している。若干の情報
項目の追加と定義の記述の修正を通じて、EN版CAM/DENMのDE/DFをデータ辞書（案）のDE/DFで説明できる。

なお、データ辞書（案）Ver.3は付録1に、Ver2からの変更点を赤字下線で示し全文を掲載した。

<table>
<thead>
<tr>
<th>EN版 CAM/DENM</th>
<th>記述名（EN）</th>
<th>記述名（JN）</th>
<th>CAM</th>
<th>DENM</th>
<th>JARIデータ辞書Ver3対応DS/DF/DE名称</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 DF ActionID</td>
<td>アクションID</td>
<td>○</td>
<td>DF-ID</td>
<td></td>
<td>DF-Event-ID</td>
</tr>
<tr>
<td>2 DF AlacarteContainer</td>
<td>アラカルトコンテナ</td>
<td>○</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3 DF Altitude</td>
<td>高度</td>
<td>○</td>
<td>DE-Elevation</td>
<td></td>
<td></td>
</tr>
<tr>
<td>4 DF BasicContainer</td>
<td>基本コンテナ</td>
<td>○</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>5 DF BasicVehicleContainerHighFrequency</td>
<td>基本車両コンテナ高頻度</td>
<td>○</td>
<td>DS-VehicleStatus</td>
<td></td>
<td></td>
</tr>
<tr>
<td>6 DF BasicVehicleContainerLowFrequency</td>
<td>基本車両コンテナ低頻度</td>
<td>○</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>7 DF CamParameters</td>
<td>カメラパラメータ</td>
<td>○</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>8 DF CauseCode</td>
<td>原因コード</td>
<td>○</td>
<td>DF-CauseEvent</td>
<td></td>
<td></td>
</tr>
<tr>
<td>9 DF ClosedLanes</td>
<td>車線閉鎖</td>
<td>○</td>
<td>DF-RestrictedStatus</td>
<td></td>
<td></td>
</tr>
<tr>
<td>10 DF Curvature</td>
<td>カーブ</td>
<td>○</td>
<td>DE-Azimuth, DE-Heading, DE-ObstacleDirection</td>
<td></td>
<td></td>
</tr>
<tr>
<td>11 DF DangerousGoodsContainer</td>
<td>危険物コンテナ</td>
<td>○</td>
<td>DF-DangerousGoodsTransport</td>
<td></td>
<td></td>
</tr>
<tr>
<td>12 DF DangerousGoodsExtended</td>
<td>危険物拡張</td>
<td>○</td>
<td>DF-DangerousGoodsTransport</td>
<td></td>
<td></td>
</tr>
<tr>
<td>13 DF DeltaReferencePosition</td>
<td>基準位置差分</td>
<td>○</td>
<td>DF-PositionGeographical</td>
<td></td>
<td></td>
</tr>
<tr>
<td>14 DF EmergencyContainer</td>
<td>救急コンテナ</td>
<td>○</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>15 DF EmptyRSUContainerHighFrequency</td>
<td>空RSUコンテナ高頻度</td>
<td>○</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>16 DF Heading</td>
<td>方位</td>
<td>○</td>
<td>DE-Azimuth, DE-Heading, DE-ObstacleDirection</td>
<td></td>
<td></td>
</tr>
<tr>
<td>17 DF HighFrequencyContainer</td>
<td>高頻度コンテナ</td>
<td>○</td>
<td>DS-VehicleStatus</td>
<td></td>
<td></td>
</tr>
<tr>
<td>18 DF ImpactReductionContainer</td>
<td>衝突緩和コンテナ</td>
<td>○</td>
<td>DF-CrashStatus</td>
<td></td>
<td></td>
</tr>
<tr>
<td>19 DF ItineraryPath</td>
<td>行程路路</td>
<td>○</td>
<td>DS-VehicleStatus</td>
<td></td>
<td></td>
</tr>
<tr>
<td>20 DF LateralAcceleration</td>
<td>横加速度</td>
<td>○</td>
<td>DE-Acceleration, DE-AccelerationConfidence</td>
<td></td>
<td></td>
</tr>
<tr>
<td>21 DF LocationContainer</td>
<td>位置コンテナ</td>
<td>○</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>22 DF LongitudinalAcceleration</td>
<td>縦加速度</td>
<td>○</td>
<td>DE-Acceleration, DE-AccelerationConfidence</td>
<td></td>
<td></td>
</tr>
<tr>
<td>23 DF ManagementContainer</td>
<td>管理コンテナ</td>
<td>○</td>
<td>DS-ManagementOfInfo</td>
<td></td>
<td></td>
</tr>
<tr>
<td>24 DF RescueContainer</td>
<td>救急コンテナ</td>
<td>○</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>25 DF RoadWorksContainerBasic</td>
<td>道路工事コンテナ基本</td>
<td>○</td>
<td>DF-RoadWorkStatus</td>
<td></td>
<td></td>
</tr>
<tr>
<td>26 DF RoadWorksContainerExtended</td>
<td>道路工事コンテナ拡張</td>
<td>○</td>
<td>DF-RoadWorkStatus</td>
<td></td>
<td></td>
</tr>
<tr>
<td>27 DF SafetyCarContainer</td>
<td>安全確認車コンテナ</td>
<td>○</td>
<td>DF-RestrictedStatus</td>
<td></td>
<td></td>
</tr>
<tr>
<td>28 DF SituationContainer</td>
<td>状況コンテナ</td>
<td>○</td>
<td>DF-CauseEvent</td>
<td></td>
<td></td>
</tr>
<tr>
<td>29 DF SpecialTransportContainer</td>
<td>特殊輸送コンテナ</td>
<td>○</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>30 DF SpecialVehicleContainer</td>
<td>特殊車両コンテナ</td>
<td>○</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>31 DF Speed</td>
<td>速度</td>
<td>○</td>
<td>DE-Speed</td>
<td></td>
<td></td>
</tr>
<tr>
<td>32 DF StationaryVehicleContainer</td>
<td>空RSUコンテナ高頻度</td>
<td>○</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>33 DF SteeringWheelAngle</td>
<td>ハンドル角</td>
<td>○</td>
<td>DF-SteeringWheelStatus</td>
<td></td>
<td></td>
</tr>
<tr>
<td>34 DF Traces</td>
<td>軌跡</td>
<td>○</td>
<td>DF-PathHistory</td>
<td></td>
<td></td>
</tr>
<tr>
<td>35 DF VehicleIdentification</td>
<td>車両ID</td>
<td>○</td>
<td>DF-VehicleSpec</td>
<td></td>
<td></td>
</tr>
<tr>
<td>36 DF VehicleIdentification</td>
<td>車両ID</td>
<td>○</td>
<td>DF-VehicleSpec</td>
<td></td>
<td></td>
</tr>
<tr>
<td>37 DF VehicleLength</td>
<td>車長</td>
<td>○</td>
<td>DE-VehicleLength, DE-VehicleLengthConfidence</td>
<td></td>
<td></td>
</tr>
<tr>
<td>38 DF VerticalAcceleration</td>
<td>垂直加速度</td>
<td>○</td>
<td>DE-Acceleration</td>
<td></td>
<td></td>
</tr>
<tr>
<td>39 DF YawRate</td>
<td>ヨーレート</td>
<td>○</td>
<td>DE-YawRate</td>
<td></td>
<td></td>
</tr>
<tr>
<td>40 DF AltitudeConfidence</td>
<td>高度信頼度</td>
<td>○</td>
<td>DE-AccelerationConfidence</td>
<td></td>
<td></td>
</tr>
<tr>
<td>41 DE AccelerationConfidence</td>
<td>加速度信頼度</td>
<td>○</td>
<td>DE-AccelerationConfidence</td>
<td></td>
<td></td>
</tr>
<tr>
<td>42 DE AltitudeConfidence</td>
<td>高度信頼度</td>
<td>○</td>
<td>DE-AccelerationConfidence</td>
<td></td>
<td></td>
</tr>
<tr>
<td>43 DE AltitudeValue</td>
<td>高度値</td>
<td>○</td>
<td>DE-AccelerationConfidence</td>
<td></td>
<td></td>
</tr>
<tr>
<td>44 DE AltitudeValue</td>
<td>高度値</td>
<td>○</td>
<td>DE-AccelerationConfidence</td>
<td></td>
<td></td>
</tr>
<tr>
<td>45 DE AltitudeValue</td>
<td>高度値</td>
<td>○</td>
<td>DE-AccelerationConfidence</td>
<td></td>
<td></td>
</tr>
<tr>
<td>46 DE AltitudeValue</td>
<td>高度値</td>
<td>○</td>
<td>DE-AccelerationConfidence</td>
<td></td>
<td></td>
</tr>
<tr>
<td>47 DE AltitudeValue</td>
<td>高度値</td>
<td>○</td>
<td>DE-AccelerationConfidence</td>
<td></td>
<td></td>
</tr>
<tr>
<td>48 DE AltitudeValue</td>
<td>高度値</td>
<td>○</td>
<td>DE-AccelerationConfidence</td>
<td></td>
<td></td>
</tr>
<tr>
<td>49 DE AltitudeValue</td>
<td>高度値</td>
<td>○</td>
<td>DE-AccelerationConfidence</td>
<td></td>
<td></td>
</tr>
<tr>
<td>50 DE AltitudeValue</td>
<td>高度値</td>
<td>○</td>
<td>DE-AccelerationConfidence</td>
<td></td>
<td></td>
</tr>
<tr>
<td>51 DE AltitudeValue</td>
<td>高度値</td>
<td>○</td>
<td>DE-AccelerationConfidence</td>
<td></td>
<td></td>
</tr>
<tr>
<td>52 DE AltitudeValue</td>
<td>高度値</td>
<td>○</td>
<td>DE-AccelerationConfidence</td>
<td></td>
<td></td>
</tr>
<tr>
<td>53 DE AltitudeValue</td>
<td>高度値</td>
<td>○</td>
<td>DE-AccelerationConfidence</td>
<td></td>
<td></td>
</tr>
<tr>
<td>54 DE AltitudeValue</td>
<td>高度値</td>
<td>○</td>
<td>DE-AccelerationConfidence</td>
<td></td>
<td></td>
</tr>
<tr>
<td>55 DE AltitudeValue</td>
<td>高度値</td>
<td>○</td>
<td>DE-AccelerationConfidence</td>
<td></td>
<td></td>
</tr>
<tr>
<td>56 DE AltitudeValue</td>
<td>高度値</td>
<td>○</td>
<td>DE-AccelerationConfidence</td>
<td></td>
<td></td>
</tr>
<tr>
<td>57 DE AltitudeValue</td>
<td>高度値</td>
<td>○</td>
<td>DE-AccelerationConfidence</td>
<td></td>
<td></td>
</tr>
<tr>
<td>58 DE AltitudeValue</td>
<td>高度値</td>
<td>○</td>
<td>DE-AccelerationConfidence</td>
<td></td>
<td></td>
</tr>
<tr>
<td>59 DE AltitudeValue</td>
<td>高度値</td>
<td>○</td>
<td>DE-AccelerationConfidence</td>
<td></td>
<td></td>
</tr>
<tr>
<td>60 DE AltitudeValue</td>
<td>高度値</td>
<td>○</td>
<td>DE-AccelerationConfidence</td>
<td></td>
<td></td>
</tr>
<tr>
<td>61 DE AltitudeValue</td>
<td>高度値</td>
<td>○</td>
<td>DE-AccelerationConfidence</td>
<td></td>
<td></td>
</tr>
<tr>
<td>62 DE AltitudeValue</td>
<td>高度値</td>
<td>○</td>
<td>DE-AccelerationConfidence</td>
<td></td>
<td></td>
</tr>
<tr>
<td>63 DE AltitudeValue</td>
<td>高度値</td>
<td>○</td>
<td>DE-AccelerationConfidence</td>
<td></td>
<td></td>
</tr>
<tr>
<td>64 DE AltitudeValue</td>
<td>高度値</td>
<td>○</td>
<td>DE-AccelerationConfidence</td>
<td></td>
<td></td>
</tr>
<tr>
<td>65 DE AltitudeValue</td>
<td>高度値</td>
<td>○</td>
<td>DE-AccelerationConfidence</td>
<td></td>
<td></td>
</tr>
<tr>
<td>66 DE AltitudeValue</td>
<td>高度値</td>
<td>○</td>
<td>DE-AccelerationConfidence</td>
<td></td>
<td></td>
</tr>
<tr>
<td>67 DE AltitudeValue</td>
<td>高度値</td>
<td>○</td>
<td>DE-AccelerationConfidence</td>
<td></td>
<td></td>
</tr>
<tr>
<td>68 DE AltitudeValue</td>
<td>高度値</td>
<td>○</td>
<td>DE-AccelerationConfidence</td>
<td></td>
<td></td>
</tr>
<tr>
<td>69 DE AltitudeValue</td>
<td>高度値</td>
<td>○</td>
<td>DE-AccelerationConfidence</td>
<td></td>
<td></td>
</tr>
<tr>
<td>70 DE AltitudeValue</td>
<td>高度値</td>
<td>○</td>
<td>DE-AccelerationConfidence</td>
<td></td>
<td></td>
</tr>
<tr>
<td>71 DE AltitudeValue</td>
<td>高度値</td>
<td>○</td>
<td>DE-AccelerationConfidence</td>
<td></td>
<td></td>
</tr>
<tr>
<td>72 DE AltitudeValue</td>
<td>高度値</td>
<td>○</td>
<td>DE-AccelerationConfidence</td>
<td></td>
<td></td>
</tr>
<tr>
<td>73 DE AltitudeValue</td>
<td>高度値</td>
<td>○</td>
<td>DE-AccelerationConfidence</td>
<td></td>
<td></td>
</tr>
<tr>
<td>74 DE AltitudeValue</td>
<td>高度値</td>
<td>○</td>
<td>DE-AccelerationConfidence</td>
<td></td>
<td></td>
</tr>
<tr>
<td>75 DE AltitudeValue</td>
<td>高度値</td>
<td>○</td>
<td>DE-AccelerationConfidence</td>
<td></td>
<td></td>
</tr>
<tr>
<td>76 DE AltitudeValue</td>
<td>高度値</td>
<td>○</td>
<td>DE-AccelerationConfidence</td>
<td></td>
<td></td>
</tr>
<tr>
<td>77 DE AltitudeValue</td>
<td>高度値</td>
<td>○</td>
<td>DE-AccelerationConfidence</td>
<td></td>
<td></td>
</tr>
<tr>
<td>78 DE AltitudeValue</td>
<td>高度値</td>
<td>○</td>
<td>DE-AccelerationConfidence</td>
<td></td>
<td></td>
</tr>
<tr>
<td>79 DE AltitudeValue</td>
<td>高度値</td>
<td>○</td>
<td>DE-AccelerationConfidence</td>
<td></td>
<td></td>
</tr>
<tr>
<td>80 DE AltitudeValue</td>
<td>高度値</td>
<td>○</td>
<td>DE-AccelerationConfidence</td>
<td></td>
<td></td>
</tr>
<tr>
<td>81 DE AltitudeValue</td>
<td>高度値</td>
<td>○</td>
<td>DE-AccelerationConfidence</td>
<td></td>
<td></td>
</tr>
<tr>
<td>82 DE AltitudeValue</td>
<td>高度値</td>
<td>○</td>
<td>DE-AccelerationConfidence</td>
<td></td>
<td></td>
</tr>
<tr>
<td>83 DE AltitudeValue</td>
<td>高度値</td>
<td>○</td>
<td>DE-AccelerationConfidence</td>
<td></td>
<td></td>
</tr>
<tr>
<td>84 DE AltitudeValue</td>
<td>高度値</td>
<td>○</td>
<td>DE-AccelerationConfidence</td>
<td></td>
<td></td>
</tr>
<tr>
<td>85 DE AltitudeValue</td>
<td>高度値</td>
<td>○</td>
<td>DE-AccelerationConfidence</td>
<td></td>
<td></td>
</tr>
<tr>
<td>86 DE AltitudeValue</td>
<td>高度値</td>
<td>○</td>
<td>DE-AccelerationConfidence</td>
<td></td>
<td></td>
</tr>
<tr>
<td>87 DE AltitudeValue</td>
<td>高度値</td>
<td>○</td>
<td>DE-AccelerationConfidence</td>
<td></td>
<td></td>
</tr>
<tr>
<td>88 DE AltitudeValue</td>
<td>高度値</td>
<td>○</td>
<td>DE-AccelerationConfidence</td>
<td></td>
<td></td>
</tr>
<tr>
<td>89 DE AltitudeValue</td>
<td>高度値</td>
<td>○</td>
<td>DE-AccelerationConfidence</td>
<td></td>
<td></td>
</tr>
<tr>
<td>90 DE AltitudeValue</td>
<td>高度値</td>
<td>○</td>
<td>DE-AccelerationConfidence</td>
<td></td>
<td></td>
</tr>
<tr>
<td>91 DE AltitudeValue</td>
<td>高度値</td>
<td>○</td>
<td>DE-AccelerationConfidence</td>
<td></td>
<td></td>
</tr>
<tr>
<td>92 DE AltitudeValue</td>
<td>高度値</td>
<td>○</td>
<td>DE-AccelerationConfidence</td>
<td></td>
<td></td>
</tr>
<tr>
<td>93 DE AltitudeValue</td>
<td>高度値</td>
<td>○</td>
<td>DE-AccelerationConfidence</td>
<td></td>
<td></td>
</tr>
<tr>
<td>94 DE AltitudeValue</td>
<td>高度値</td>
<td>○</td>
<td>DE-AccelerationConfidence</td>
<td></td>
<td></td>
</tr>
<tr>
<td>95 DE AltitudeValue</td>
<td>高度値</td>
<td>○</td>
<td>DE-AccelerationConfidence</td>
<td></td>
<td></td>
</tr>
<tr>
<td>96 DE AltitudeValue</td>
<td>高度値</td>
<td>○</td>
<td>DE-AccelerationConfidence</td>
<td></td>
<td></td>
</tr>
<tr>
<td>97 DE AltitudeValue</td>
<td>高度値</td>
<td>○</td>
<td>DE-AccelerationConfidence</td>
<td></td>
<td></td>
</tr>
<tr>
<td>98 DE AltitudeValue</td>
<td>高度値</td>
<td>○</td>
<td>DE-AccelerationConfidence</td>
<td></td>
<td></td>
</tr>
<tr>
<td>99 DE AltitudeValue</td>
<td>高度値</td>
<td>○</td>
<td>DE-AccelerationConfidence</td>
<td></td>
<td></td>
</tr>
<tr>
<td>100 DE AltitudeValue</td>
<td>高度値</td>
<td>○</td>
<td>DE-AccelerationConfidence</td>
<td></td>
<td></td>
</tr>
<tr>
<td>No.</td>
<td>EN版 (EN)</td>
<td>記述名(JN)</td>
<td>CAM</td>
<td>DENM</td>
<td>DE/DF</td>
</tr>
<tr>
<td>-----</td>
<td>-----------</td>
<td>-------------</td>
<td>-----</td>
<td>------</td>
<td>-------</td>
</tr>
<tr>
<td>70</td>
<td>DE HardShoulderStatus</td>
<td>路肩状態</td>
<td>○</td>
<td>○</td>
<td>DF-RestrictedStatus</td>
</tr>
<tr>
<td>71</td>
<td>DE HeadingConfidence</td>
<td>方位信頼度</td>
<td>○</td>
<td>○</td>
<td>DF-Azimuth, DE-Heading, DE-ObstacleDirection</td>
</tr>
<tr>
<td>72</td>
<td>DE HeadingValue</td>
<td>方位値</td>
<td>○</td>
<td>○</td>
<td>DF-Azimuth, DE-Heading, DE-ObstacleDirection</td>
</tr>
<tr>
<td>73</td>
<td>DE HeightOfCarriage</td>
<td>キャリア高さ</td>
<td>○</td>
<td>○</td>
<td>DF-VehicleParameter</td>
</tr>
<tr>
<td>74</td>
<td>DE InformationQuality</td>
<td>情報品質</td>
<td>○</td>
<td>○</td>
<td>DF-StateConfidence</td>
</tr>
<tr>
<td>75</td>
<td>DE IsCancellation</td>
<td>キャンセル</td>
<td>○</td>
<td>○</td>
<td>DF-ServiceInfo</td>
</tr>
<tr>
<td>76</td>
<td>DE IsNegation</td>
<td>否定</td>
<td>○</td>
<td>○</td>
<td>DF-ServiceInfo</td>
</tr>
<tr>
<td>77</td>
<td>DE LaneNumber</td>
<td>車線番号</td>
<td>○</td>
<td>○</td>
<td>DF-SingleRoad</td>
</tr>
<tr>
<td>78</td>
<td>DE LateralAccelerationValue</td>
<td>横加速度値</td>
<td>○</td>
<td>○</td>
<td>DF-Acceleration</td>
</tr>
<tr>
<td>79</td>
<td>DE Latitude</td>
<td>緯度</td>
<td>○</td>
<td>○</td>
<td>DE-Latitude</td>
</tr>
<tr>
<td>80</td>
<td>DE LightBarSirenInUse</td>
<td>ライトバー・サイレン使用</td>
<td>○</td>
<td>○</td>
<td>DF-EmergencyVehicleStatus, DE-LightbarInUse, DE-SirenInUse</td>
</tr>
<tr>
<td>81</td>
<td>DE LimitQuantity</td>
<td>限定量</td>
<td>○</td>
<td>○</td>
<td>DF-DangerousGoodsTransport</td>
</tr>
<tr>
<td>82</td>
<td>DE LongitudinalAccelerationValue</td>
<td>縦加速度値</td>
<td>○</td>
<td>○</td>
<td>DF-Acceleration</td>
</tr>
<tr>
<td>83</td>
<td>DE MessageID</td>
<td>メッセージID</td>
<td>○</td>
<td>○</td>
<td>DF-MESSAGEID</td>
</tr>
<tr>
<td>84</td>
<td>DE NumberOfOccupants</td>
<td>乗客数</td>
<td>○</td>
<td>○</td>
<td>DF-OccupantInfo, DE-Ocupancy</td>
</tr>
<tr>
<td>85</td>
<td>DE PathDeltaTime</td>
<td>差分パス時間</td>
<td>○</td>
<td>○</td>
<td>DE-TimeOfDifference</td>
</tr>
<tr>
<td>86</td>
<td>DE PerformanceClass</td>
<td>特性クラス</td>
<td>○</td>
<td>○</td>
<td>DF-DataControlInfo</td>
</tr>
<tr>
<td>87</td>
<td>DE PhoneNumber</td>
<td>電話番号</td>
<td>○</td>
<td>○</td>
<td>DF-DangerousGoodsTransport</td>
</tr>
<tr>
<td>88</td>
<td>DE PositioningSolutionType</td>
<td>位置標定タイプ</td>
<td>○</td>
<td>○</td>
<td>DF-MeasurementTechnique</td>
</tr>
<tr>
<td>89</td>
<td>DE PositionOfOccupants</td>
<td>乗員位置</td>
<td>○</td>
<td>○</td>
<td>DF-OccupantInfo, DE-Ocupancy</td>
</tr>
<tr>
<td>90</td>
<td>DE ProtocolVersion</td>
<td>プロトコルバージョン</td>
<td>○</td>
<td>○</td>
<td>DF-Version</td>
</tr>
<tr>
<td>91</td>
<td>DE PtActivationData</td>
<td>優先起動データ</td>
<td>○</td>
<td>○</td>
<td>DF-SignalPriority</td>
</tr>
<tr>
<td>92</td>
<td>DE Temperature</td>
<td>温度</td>
<td>○</td>
<td>○</td>
<td>DE-Temperature, DE-RoadTemperature</td>
</tr>
<tr>
<td>93</td>
<td>DE TransmissionInterval</td>
<td>送信間隔</td>
<td>○</td>
<td>○</td>
<td>DF-EffectiveTime</td>
</tr>
<tr>
<td>94</td>
<td>DE WheelBaseVehicle</td>
<td>車両ホイールベース</td>
<td>○</td>
<td>○</td>
<td>DF-WheelBase</td>
</tr>
<tr>
<td>95</td>
<td>DE WMInumber</td>
<td>国際製造者識別子</td>
<td>○</td>
<td>○</td>
<td>DF-VehicleType</td>
</tr>
<tr>
<td>96</td>
<td>DE YawRateConfidence</td>
<td>ヨーレート信頼度</td>
<td>○</td>
<td>○</td>
<td>DE-YawRateConfidence</td>
</tr>
<tr>
<td>97</td>
<td>DE YawRateValue</td>
<td>ヨーレート値</td>
<td>○</td>
<td>○</td>
<td>DE-YawRate</td>
</tr>
</tbody>
</table>

表 3.2.3-6 EN版 CAM/DENM と JARI データ辞書（案）Ver.3 の DE/DF 対応：続き
第4章 まとめ

4.1 分析・検証の成果

最先端の情報通信技術を用いて人・道路・車両をネットワーク化し、交通システムの安全性、効率性、快適性、環境性等を改善するITSシステムの一環として、日米欧において、路車間や車車間通信を使用したC-ITSの開発が活発に行なわれるとともに実用化が進みつつある。日本ではITSスポットやDSSSが実用化され、欧州や米国ではC-ITSのFOTやパイロットプロジェクトが進行している。

欧州では、ITSの早期展開を目指したアクションプランの一環として2009年にDG-ENTRによりC-ITSの欧州標準策定のためのEC指令M/453が出され、ETSI（TC-ITS）とCEN（TC278）が受託して標準化を実施し、M/453の期限に1年遅れの2013年7月にC-ITSの欧州標準ミニマムセットであるRelease1が提示された。Release1はリストのすべての標準が完成したわけではないが、C-ITSのアプリ層から物理層まで約200項目にわたる膨大な標準であり、今後主要な標準が欧州主導で国際標準に持ち込まれると思われる。

欧州と米国はC-ITSに関する覚書を交わして、具体的な標準の協調作業を進めてきており上記主要な標準が欧米が協調した結果となる可能性が高い。

C-ITSの国際標準化に関し、日本は、ISO/TC204/WG18や関連する他のWGでのISO標準化作業とは別に、TC204/WG3やWG14で欧州標準化を進めるETSIとリゾンしつつ標準化協調を進めている。また、国交省道路局が参加した日米欧協調の枠組みも存在するが、具体的な作業はまだ欧米協調が主体である。

日本自動車研究所においては平成21〜23年度の「ITS車載システムの標準化に関する調査研究」（以下、ITS車載SAと呼称）において、安全系や効率・環境、快適・利便系の日米欧のC-ITSのアプリを整理した想定アプリの定義案や、かかる想定アプリに必要なデータ辞書案、メッセージ案を策定した。また、平成24年度の「ITS車載システムの標準化に関する検証」では日米欧のC-ITSのFOTや標準化動向の調査結果をもとにC-ITS想定アプリとデータ辞書の検証を行った。

本報告では、日米欧のC-ITSに関する研究、開発、実用化や標準化の最新動向を分析するとともに、欧州のC-ITS主要規格の調査や分析を行い、分析結果をもとに昨年度までに策定・改訂した想定アプリやメッセージ案、データ辞書案の検証その結果をもとにした必要な修正を行った。分析結果はC-ITSの国際標準化活動や各システムの仕様検討材料としてC-ITS関係者に説明とともに供した。
(1) 欧米および日本における C-ITS の経緯と最新の状況

① 欧米および日本における C-ITS の経緯と最新の状況

ここでは、欧米と日本における C-ITS の研究・開発、実用化に関する政府の施策やプロジェクトの経緯と新動向を概説するとともに、主要プロジェクトにつき紹介し、C-ITS に関する状況をまとめた。

a. 欧州における C-ITS の経緯と最新の状況

欧州のC-ITS研究プロジェクトの総括としてFP6、FP7、CIPの研究開発プロジェクトの内、FP6について10、FP7とCIPについて34の着目すべきプロジェクトを一覧して示すとともに、この内、汎欧州C-ITS FOTプロジェクトDriveC2Xと平行して各国で実施の主要な国家FOTプロジェクトについても示した。FP7およびCIPのC-ITS関連プロジェクトは既に約150Mユーロをかけ、最終段階であるCall10に入っている。FP7のCall10では自動走行に焦点が当てられ、また、Horizon2020のCall1でも自動運転関連のテーマが出されるなど、欧州の研究開発は自立型運転支援システムからC-ITSである協調型運転支援システムの段階を経て、C-ITSの最終段階である自動運転システムにフォーカスされつつある。

C-ITSの実用化動向としてTERNにおける汎欧州ITS配備のプロジェクトEASY WAY、Amsterdam Groupが主導したC-ITSコリドー、FP7の配備プロジェクトCOMPASS4D、および2015年10月より搭載義務付けのeCallシステムに関するFP7のパイロットプロジェクトHeERO & HeERO2につき紹介した。

b. 米国におけるC-ITSの経緯と最新の状況

また、Connected Vehicleにおける最大のプロジェクトである、大規模FOT実施のSafety Pilotプロジェクトの内容を詳述するとともに、SafetyPilotの成果をベースとしたRegional PilotやC-ITSテストベッドについても述べた。

c. 日本におけるC-ITSの経緯と最新の状況

平成23年8月にIT戦略本部が提示の「新たな情報通信技術戦略」における「グリーン
ITS」および「安全運転支援システム」のロードマップ、平成25年6月の「日本再興戦略(JAPAN is BACK)」、「世界最先端IT国家創造宣言」の閣議決定における府省横断ロードマップの策定や推進体制の構築による、高度運転支援技術・自動走行システムの開発・実用化の推進宣言等、C-ITSに関する全体動向について概説するとともに、ITS世界会議東京におけるC-ITSの5つのITS Green Safety Showcaseを示した。

② C-ITSの標準化に関する状況まとめ
ここでは、欧州のC-ITS実用化に大きな影響を与える、Release1を中心としたC-ITSの標準化やその欧米協調と、5.9GHzWiFi共用化の最新動向を紹介した。

a. 欧州のM/453最終報告概要とC-ITS標準化の現状
DG_ENTRが2009年10月に指令した、C-ITSの最低限の欧州標準（Release1）の策定指令M/453はCEN、ETSIが受諾し、結局期限より1年遅れの2013年7月に最終報告書である約200件の標準化項目を記載したRelease1が発行された。ここではRelease1を含む、ETSIのC-ITSに関する最新の標準化項目の一覧やITS-Sの各レイヤ毎の主要規格を示すとともに、標準化の主要な残課題についても述べた。Release1の全規格の完成はETSIでは2013年終わり~2014年始め、CENでは2014年中になりそうである。

Day1アプリのためのRelease1に続き、ETSIは既にDay1アプリの次に展開に対応するRelease2規格の検討活動を開始しており、自動運転も考慮に入れている。

ETSIは標準化の主要目的の一つである相互運用性の確保、異なるメーカのITS-S間の相互接続性試験を行うPlugtestを既に3回実施している。3回目のPlugtestでは主要な残課題についてもテストされた。

C-ITSに関わる欧米協調では7つのWGが設定され、標準化や自動化を含む3つのWGは欧米日の3極協調体制で進められている。標準化のWGには6つのHTGが設置されており、メッセージに関する協調は進んでいるが必ずしも欧米が合致していない項目もある。

米国におけるC-ITSの主要な標準は上位層を規定するSAEJ2735、SAEJ2945と通信部を規定するIEEE802.11pとIEEE1609シリーズであり、SAEJ2735はメッセージの欧米協調の結果をもとに改訂中である。ここでは主なメッセージの欧米協調の内容についても紹介した。

日本におけるC-ITS標準化の現状として規格の散在の状況や、ISO国際標準化やETSIへの対応について述べるとともに、欧州メッセージの分析・検証結果をベースとした日本自動車研究所の関係機関への貢献についても述べた。

b. 米国および欧州の協調システム周波数帯共用問題の現状
米国ではITS専用として割り当てられてから既に十年以上が経過している5.9GHz帯のWiFi共用化の検討が2012年にFCCより打ち出されて、検討がIEEE802.11DSRC共存ターゲットチームによって実施されつつあり、WiFi等通信機メーカも共用化提案を出している。

米国の動きを受け欧州でもEUが2013年に5.9GHz帯のRLAN共用化検討をCEPTに指令しており、ETSIがCEPTに対し技術インプットを行っている。

ここでは、米国、欧州の5.9GHz帯のチャンネル構成とこれに対するWiFiの新チャンネルを示した。
ル要求や、WiFi 共用化検討スケジュール、共用化の検討状況や検討例を示した。共用化については米国では 2014 年 12 月に NTIA が最終推奨案を、欧州では同年 11 月に CEPT が最終報告書を提示する予定である。

5.9GHz 帯 WiFi の共用化の影響はその方法によっては安全サービスに支障をきたすこととも考えられ、今後の動向には特に注意をしていく必要がある。

(2) C-ITS プラットフォームの分析と検証

① 検証に用いた主な欧州 C-ITS 標準の分析

協調システムのプラットフォームとして作成した想定アプリ、メッセージ案やデータ辞書案を、欧州の Day1 サービスで使用予定のアプリ、メッセージ CAM/DENM やそのデータ辞書と比較して妥当性を検証するため ETSI の関連規格を分析した。

a. アプリ要求仕様規格の分析

欧州の道路交通安全アプリは、危険状況に対する緊急性を現す TTC で、TTC の大きな側より「情報提供」、「注意喚起」、「警報」、「自動」に分類されている。ここでは、欧州の安全系主要メッセージである CAM/DENM を用いる ETSI の 2 つのアプリ規格 TS 101539-1、TS 101539-3 によって分析した結果について示した。TS 101539-1 は「注意喚起」での RHS アプリにおける基本要件を、TS 101539-3 は「警報」での LCRW アプリにおける基本要件を規定するものである。

TS 101539-1、TS 101539-3 とも車載通信システムの EtoE 遅延時間は約 300ms 以下を必要としている。また、ITS-S 性能クラスを 2 クラスに分けクリティカルな安全を扱う RHS や LCRW アプリでは車載センサからのデータ収集時刻 T0 と送信側タイムスタンプ T1 間の遅延は 150msec 以下、交信距離は 300m 必要としている。

b. 主要メッセージ CAM,DENM の EN 版規格の分析

CAM、DENM は欧州の FOT の結果の反映や、米国の C-ITS のメッセージ、データ辞書を規定した SAE J2735 の策定チームとの協調を経て、TS（技術仕様）から EN（欧州標準）に格上げ改訂され、発行された。

CAM は ITS-S よりある時刻でのその ITS-S の位置や状態を、通常は一定間隔で送信するメッセージであり、最も基本的なメッセージである。ここでは規格 EN 302637-2 を分析し CAM に関する要件と概要構成を示すとともに、CAM の概要についてまとめた。

DENM は ITS-S にイベントが生じたり（例えば事故や故障による車車上への停止等）、ITS-S がイベントを検出した場合（例えば悪天候や路面凍結等）にそのイベントをその ITS-S で発送するメッセージである。ここでは規格 EN 302637-3 を分析し DENM に関する要件と概要構成を示すとともに、DENM の概要についてまとめた。

c. 共通データ辞書規格の分析

CAM 基本サービスと DEN 基本サービスに使用される、メッセージ CAM/DENM に使用
されるデータを定義した共通データ辞書規格 ETSI TS 102 894-2 を分析した。共通データ辞書規格ではデータ辞書の構造が定義され、かかる定義による DE/DF が Annex A に記載されている。

② C-ITS のアプリ整理案、メッセージ案、データ辞書案の検証

C-ITS の FOT 等のプロジェクトやアプリ関連資料等や、前記各規格の調査・分析結果をベースに日本自動車研究所で策定したアプリ整理案、メッセージ案、データ辞書案の検証を行った。

a. アプリ整理案の検証

今年度欧州の COMeSafety2 より発行された C-ITS サービスカタログに記載の欧州における想定アプリをベースに、日本自動車研究所で 2011 年度に改訂した 37 個の想定アプリ、76 類型化ユースケースからなるアプリ定義案を検証した。検証の結果、全ての COMeSafety2 よりも策定アプリの類型化ユースケースの中で説明がつくことを確認した。

b. メッセージ構成案の EN 版 CAM、DENM との比較検証

2011 年度に日本自動車研究所で策定した安全系アプリのメッセージ案を、欧米協調の結果としての欧州の主に安全系アプリに使用される最新のメッセージ CAM、DENM の分析結果と比較することで検証した。検証の結果、本メッセージ案の情報項目により CAM/DENM の全 DE/DF 項目を説明できることを確認した。

c. データ辞書案の検証と改訂

2012 年度に公表した「協調システムのデータ辞書（案） Ver2」は日米欧のメッセージをベースにしたものであるが、欧州のメッセージ CAM、DENM は欧米協調の結果、EN 版はベースとした TS 版より大きく変更されたことが EN 版／TS 版規格の比較分析の結果より明らかとなった。そこで、EN 版 CAM、DENM の DE/DF および、共通データ辞書規格の DE/DF をベースに上記「データ辞書（案） Ver2」を検証し、その結果をもとにデータ辞書（案）を改訂した。

ここでは、EN 版 CAM、DENM の DE/DF を主要な DE/DF の EN 版／TS 版の相違を示すとともに、検証の結果、EN 版 CAM、DENM の DE/DF が若干の情報項目の追加と定義の記述の修正でデータ辞書（案）の DE/DF で説明できることを示した。改訂した「協調システムのデータ辞書（案） Ver3」は付録 1 に示した。
4.2 今後の課題

C-ITS の欧州標準に関しては、CEN・ETSI より EC 指令 M/453 における最終期限より 1 年遅れの 2013 年 7 月に約 200 件からなる Release1 が出された。Release1 における全ての標準の完成は主に CEN 側での遅れで 2014 年中になりそうであるが、欧州では 2015 年から の C-ITS Day1 アプリ実用化が始まろうとしており、欧州標準の早期の凍結と、主要な標準の早期国際標準化が図られる可能性は高い。また、ETSI は Day1 アプリのための Release1 に続き、次の展開に対応する Release2 規格の検討活動を開始している。

米国も欧米協調覚書のもと、アプリやメッセージ、セキュリティ、通信等の協調作業を行なっている。セキュリティ、通信等では欧米間にまだかなり相違が見られるものの、アプリやメッセージに関しては、基本安全メッセージ（欧州 CAM vs 米国 BSM）や交差点系アプリの SPaT, MAP 等のメッセージに協調成果が見られる。日本も、国土交通省が欧米協調に参画することで 3 極協調体制が整い、総務省も電波産業会（ARIB）を介して ETSI と協調を行いつつある。

本調査研究は、C-ITS やその標準化の最新動向を実際のプロジェクト内容や規格資料をもとに調査、分析し、日本自動車研究所が策定した C-ITS の想定アプリやメッセージ案、データ辞書案の検証を行い、今後の C-ITS 想定ユースケースやデータ辞書、メッセージ等の国際標準化提案時での日本の対応に資することを目的とした。

現状では欧米、特に欧州主導の急速な C-ITS 標準化の動きに対し、日本は既に守勢に回りつつあるが、まだ国際提案がなされていないデータ辞書を活用した C-ITS に関するメッセージ交換方法、基本的情報である時刻、位置、車両情報等の標準化や、最近動き出した協調自動運転や交差点系などの高度な運転支援などを含む、Release2 と呼称の次の標準化ステップに対しては日本が主導権をとっていくべきと考える。
経済産業省委託

平成25年度工業標準化推進事業
戦略的国際標準化加速事業：ITSの規格化事業

ITS協調システムの情報項目の標準化に関する
分析・検証

報告書

平成26年3月

発行 一般財団法人日本自動車研究所
東京都港区芝大門1-1-30
日本自動車会館12F
TEL 03（5733）7925
リサイクル適性(A)
この印刷物は、印刷用の紙へリサイクルできます。